A smoothing property for the L2-critical NLS equations and an application to blowup theory

被引:18
作者
Keraani, Sahbi [1 ]
Vargas, Ana [2 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 03期
关键词
Time dependent Schrodinger equation; Blowup; Bourgain spaces; NONLINEAR SCHRODINGER-EQUATION; MASS CONCENTRATION;
D O I
10.1016/j.anihpc.2008.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a smoothing property for the L-2-critical nonlinear Schrodinger equation and we use it to study the blowup dynamics for singular solutions below the energy level. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:745 / 762
页数:18
相关论文
共 38 条
[1]   Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation [J].
Begout, Pascal ;
Vargas, Ana .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5257-5282
[2]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[3]  
BOURGAIN J, 1991, LECT NOTES MATH, V1469, P179
[4]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[5]   On the role of quadratic oscillations in nonlinear Schrodinger equations II.: The L2-critical case [J].
Carles, Remi ;
Keraani, Sahbi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :33-62
[6]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[7]  
Colliander J, 2005, MATH RES LETT, V12, P357
[8]  
Colliander J, 2002, MATH RES LETT, V9, P659
[9]  
Constantin P., 1988, J. Amer. Math. Soc, V1
[10]   KAKEYA MAXIMAL FUNCTION AND SPHERICAL SUMMATION MULTIPLIERS [J].
CORDOBA, A .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (01) :1-22