Non-negative Matrix Factorization of Gamma-Ray Spectra for Background Modeling, Detection, and Source Identification

被引:19
作者
Bilton, K. J. [1 ]
Joshi, T. H. [2 ]
Bandstra, M. S. [2 ]
Curtis, J. C. [2 ]
Quiter, B. J. [2 ]
Cooper, R. J. [2 ]
Vetter, K. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Appl Nucl Phys Program, Berkeley, CA 94720 USA
关键词
Anomaly detection; gamma-ray detection; gamma-ray spectral analysis; non-negative matrix factorization (NMF); radiation source search; CONSTITUENT SPECTRA; ALGORITHMS; SPECTROSCOPY; RECOVERY; RADMAP; PARTS;
D O I
10.1109/TNS.2019.2907267
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radiological source search is a challenge involving the detection, identification, and localization of weak sources within background environments that vary both spatially and temporally. In this paper, a method for simultaneously detecting and identifying gamma-ray sources using background models formed from spectral data is described. Non-negative matrix factorization (NMF) is used to generate low-dimensional representations of gamma-ray spectra, allowing for a compact means of capturing variation in gamma-ray backgrounds. Background models formed using NMF are used to perform anomaly detection, and additionally, models are augmented with spectral templates of gamma-ray sources to perform simultaneous detection and identification using a likelihood ratio test. The NMF-based detection and identification algorithm is benchmarked against a standard Region of Interest algorithm and shows significant performance gains. In addition, NMF-based anomaly detection shows improvements over methods based on gross counts or principal component analysis. Algorithm performance is evaluated using unshielded sources with activities between 5 and 400 mu Ci at a standoff distance of 20 m using source injection on background data collected using a 1 m(2) NaI array on the Radiological Multisensor Analysis Platform.
引用
收藏
页码:827 / 837
页数:11
相关论文
共 40 条
[1]   A new technique for processing airborne gamma ray spectrometry data for mapping low level contaminations [J].
Aage, HK ;
Korsbech, U ;
Bargholz, K ;
Hovgaard, J .
APPLIED RADIATION AND ISOTOPES, 1999, 51 (06) :651-662
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
[Anonymous], 2001, P 13 INT C NIPS
[4]   Effects of Background on Gamma-Ray Detection for Mobile Spectroscopy and Imaging Systems [J].
Aucott, Timothy J. ;
Bandstra, Mark S. ;
Negut, Victor ;
Curtis, Joseph C. ;
Chivers, Daniel H. ;
Vetter, Kai .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (02) :985-991
[5]   RadMAP: The Radiological. Multi-sensor Analysis Platform [J].
Bandstra, Mark S. ;
Aucott, Timothy J. ;
Brubaker, Erik ;
Chivers, Daniel H. ;
Cooper, Reynold J. ;
Curtis, Joseph C. ;
Davis, John R. ;
Joshi, Tenzing H. ;
Kua, John ;
Meyer, Ross ;
Negut, Victor ;
Quinlan, Michael ;
Quiter, Brian J. ;
Srinivasan, Shreyas ;
Zakhor, Avideh ;
Zhang, Richard ;
Vetter, Kai .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 840 :59-68
[6]   Principal Component Analysis of Gamma-Ray Spectra for Radiation Portal Monitors [J].
Boardman, David ;
Reinhard, Mark ;
Flynn, Alison .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (01) :154-160
[7]   SVD based initialization: A head start for nonnegative matrix factorization [J].
Boutsidis, C. ;
Gallopoulos, E. .
PATTERN RECOGNITION, 2008, 41 (04) :1350-1362
[8]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[9]  
Collins Michael, 2001, NIPS, P617
[10]  
Cosofret BR, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR HOMELAND SECURITY (HST), P618, DOI 10.1109/THS.2013.6699075