Finite volume schemes for diffusion equations: Introduction to and review of modern methods

被引:217
作者
Droniou, Jerome [1 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
关键词
Review; elliptic equation; finite volume schemes; multi-point flux approximation; hybrid mimetic mixed methods; discrete duality finite volume schemes; coercivity; convergence analysis; monotony; minimum and maximum principles; MULTIPOINT FLUX APPROXIMATION; DIFFERENCE METHOD; ANISOTROPIC DIFFUSION; CONVERGENCE ANALYSIS; QUADRILATERAL GRIDS; UNSTRUCTURED GRIDS; O-METHOD; MONOTONICITY CONDITIONS; POLYHEDRAL MESHES; MAXIMUM PRINCIPLE;
D O I
10.1142/S0218202514400041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present Finite Volume methods for diffusion equations on generic meshes, that received important coverage in the last decade or so. After introducing the main ideas and construction principles of the methods, we review some literature results, focusing on two important properties of schemes (discrete versions of well-known properties of the continuous equation): coercivity and minimum-maximum principles. Coercivity ensures the stability of the method as well as its convergence under assumptions compatible with real-world applications, whereas minimum-maximum principles are crucial in case of strong anisotropy to obtain physically meaningful approximate solutions.
引用
收藏
页码:1575 / 1619
页数:45
相关论文
共 134 条
[1]   A compact multipoint flux approximation method with improved robustness [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Mallison, B. T. ;
Nordbotten, J. M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) :1329-1360
[2]   Convergence of a symmetric MPFA method on quadrilateral grids [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Klausen, R. A. ;
Wheeler, M. F. ;
Yotov, I. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (04) :333-345
[3]   Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (01) :2-14
[4]   Control-volume discretization method for quadrilateral grids with faults and local refinements [J].
Aavatsmark, I ;
Reiso, E ;
Teigland, R .
COMPUTATIONAL GEOSCIENCES, 2001, 5 (01) :1-23
[5]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1717-1736
[6]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[7]   An introduction to multipoint flux approximations for quadrilateral grids [J].
Aavatsmark, I .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :405-432
[8]  
Aavatsmark I, 2006, IMA VOL MATH APPL, V142, P1
[9]  
Abraham Berman., 1979, COMPUTER SCI APPL MA
[10]  
Agelas L, 2010, INT J FINITE, V7, P33