Classifying sEMG-based Hand Movements by Means of Principal Component Analysis

被引:0
作者
Isakovic, Milica S. [1 ]
Miljkovic, Nadica [1 ,2 ]
Popovic, Mirjana B. [1 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Bul Kralja Aleksandra 73, Belgrade 11120, Serbia
[2] Tecnalia Serbia, Belgrade 11120, Serbia
来源
2014 22ND TELECOMMUNICATIONS FORUM TELFOR (TELFOR) | 2014年
关键词
feature extraction; healthy subjects; grasp; principal component analysis; surface electromyography; CLASSIFICATION;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
in order to improve surface electromyography (sEMG) based control of hand prosthesis, we applied Principal Component Analysis (PCA) for feature extraction. The sEMG data (downloaded from free NINAPRO database) were recorded during three grasping and 11 finger movements. We tested the accuracy of a simple piecewise quadratic classifier for two sets of features derived from PCA. Preliminary results from a group of healthy subjects suggest that the first two principal components aren't always sufficient for successful hand movement classification. The grasping movement classification error when using three features (22.7 +/- 10.7%) was smaller than the classification error for two features (33.4 +/- 12.5%) in all subjects.
引用
收藏
页码:545 / 548
页数:4
相关论文
共 16 条
[1]  
Atkins DJ., 1996, J PROSTHET ORTHOT, V8, P2, DOI DOI 10.1097/00008526-199601000-00003
[2]  
Atzori M., 2014, SCIEI INT C DIG SIGN
[3]  
Atzori M., 2013, 2013 IEEE 13 INT C R, P1
[4]  
Atzori M., 2014, IEEE T NEUR SYS REH, DOI [10.1109/TNSRE.2014.23284, DOI 10.1109/TNSRE.2014.23284]
[5]  
Atzori M, 2012, P IEEE RAS-EMBS INT, P1258, DOI 10.1109/BioRob.2012.6290287
[6]   Experiences in the Creation of an Electromyography Database to Help Hand Amputated Persons [J].
Atzori, Manfredo ;
Gijsberts, Arjan ;
Heynen, Simone ;
Hager, Anne-Gabrielle Mittaz ;
Castellimi, Claudio ;
Caputo, Barbara ;
Mueller, Henning .
QUALITY OF LIFE THROUGH QUALITY OF INFORMATION, 2012, 180 :828-832
[7]  
Bosco G., 2010, The Open Rehabilitation Journal, V3, P127, DOI DOI 10.2174/1874943701003010127
[8]  
FUKUNAGA K, 1990, INTRO STAT PATTERN R, P1
[9]   Classification of EMG signals using PCA and FFT [J].
Güler N.F. ;
Koçer S. .
Journal of Medical Systems, 2005, 29 (3) :241-250
[10]   Principal Components Analysis Preprocessing for Improved Classification Accuracies in Pattern-Recognition-Based Myoelectric Control [J].
Hargrove, Levi J. ;
Li, Guanglin ;
Englehart, Kevin B. ;
Hudgins, Bernard S. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (05) :1407-1414