MRI Radiomics for Prediction of Tumor Response and Downstaging in Rectal Cancer Patients after Preoperative Chemoradiation

被引:27
作者
Chen, Haihui [1 ,2 ]
Shi, Liting [2 ,3 ]
Nguyen, Ky Nam Bao [2 ]
Monjazeb, Arta M. [2 ]
Matsukuma, Karen E. [4 ]
Loehfelm, Thomas W. [5 ]
Huang, Haixin [1 ]
Qiu, Jianfeng [3 ]
Rong, Yi [2 ]
机构
[1] Guangxi Med Univ, Dept Med Oncol, Affiliated Hosp 4, Liuzhou, Peoples R China
[2] Univ Calif Davis, Sch Med, Dept Radiat Oncol, Sacramento, CA 95817 USA
[3] Shandong First Med Univ & Shandong Acad Med Sci, Dept Radiol, Med Engn & Technol Res Ctr, Imaging X Joint Lab, Tai An, Shandong, Peoples R China
[4] Univ Calif Davis, Sch Med, Dept Pathol & Lab Med, Sacramento, CA 95817 USA
[5] Univ Calif Davis, Sch Med, Dept Radiol, Sacramento, CA 95817 USA
关键词
PATHOLOGICAL COMPLETE RESPONSE; NEOADJUVANT CHEMORADIATION; CLINICAL MANAGEMENT; ORGAN PRESERVATION; LOCAL EXCISION; CHEMORADIOTHERAPY; THERAPY; RADIOCHEMOTHERAPY; IMAGES;
D O I
10.1016/j.adro.2020.04.016
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: This study aimed to investigate radiomic features extracted from magnetic resonance imaging (MRI) scans performed before and after neoadjuvant chemoradiotherapy (nCRT) in predicting response of locally advanced rectal cancer (LARC). Methods and Materials: Thirty-nine patients who underwent nCRT for LARC were included, with 294 radiomic features extracted from MRI that was performed before (pre-CRT) and 6 to 8 weeks after completing nCRT (post-CRT). Based on tumor regression grade (TRG), 26 patients were classified as having a histopathologic good response (GR; TRG 0-1) and 13 as non-GR (TRG 2-3). Tumor downstaging (T-downstaging) occurred in 25 patients. Univariate analyses were performed to assess potential radiomic and delta-radiomic predictors for TRG in pathologic complete response (pCR) versus non-pCR, GR versus non-GR, and T-downstaging. The support vector machine-based multivariate model was used to select the best predictors for TRG and T-downstaging. Results: We identified 13 predictive features for pCR versus non-pCR, 14 for GR versus non-GR, and 16 for T-downstaging. Pre-CRT gray-level run length matrix nonuniformity, pre-CRT neighborhood intensity difference matrix (NIDM) texture strength, and post-CRT NIDM busyness predicted all 3 treatment responses. The best predictor for GR versus non-GR was pre-CRT global minimum combined with clinical N stage in the multivariate analysis. The best predictor for T-downstaging was the combination of pre-CRT gray-level co-occurrence matrix correlation, NIDM-texture strength, and gray-level co-occurrence matrix variance. The pre-CRT, post-CRT, and delta radiomic-based models had no significant difference in predicting all 3 responses. Conclusions: Pre-CRT MRI, post-CRT MRI, and delta radiomic-based models have the potential to predict tumor response after nCRT in LARC. These data, if validated in larger cohorts, can provide important predictive information to aid in clinical decision making. (C) 2020 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology.
引用
收藏
页码:1286 / 1295
页数:10
相关论文
共 46 条
[1]   Use of preoperative ultrasound staging for treatment of rectal cancer [J].
Adams, DR ;
Blatchford, GJ ;
Lin, KM ;
Ternent, CA ;
Thorson, AG ;
Christensen, MA .
DISEASES OF THE COLON & RECTUM, 1999, 42 (02) :159-166
[2]   A new paradigm for rectal cancer: Organ preservation: Introducing the International Watch & Wait Database (IWWD) [J].
Beets, G. L. ;
Figueiredo, N. L. ;
Habr-Gama, A. ;
van de Velde, C. J. H. .
EJSO, 2015, 41 (12) :1562-1564
[3]   Magnetic resonance imaging for the clinical management of rectal cancer patients: recommendations from the 2012 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting [J].
Beets-Tan, Regina G. H. ;
Lambregts, Doenja M. J. ;
Maas, Monique ;
Bipat, Shandra ;
Barbaro, Brunella ;
Caseiro-Alves, Filipe ;
Curvo-Semedo, Luis ;
Fenlon, Helen M. ;
Gollub, Marc J. ;
Gourtsoyianni, Sofia ;
Halligan, Steve ;
Hoeffel, Christine ;
Kim, Seung Ho ;
Laghi, Andrea ;
Maier, Andrea ;
Rafaelsen, Soren R. ;
Stoker, Jaap ;
Taylor, Stuart A. ;
Torkzad, Michael R. ;
Blomqvist, Lennart .
EUROPEAN RADIOLOGY, 2013, 23 (09) :2522-2531
[4]   Prognostic value of tumour regression grading and depth of neoplastic infiltration within the perirectal fat after combined neoadjuvant chemo-radiotherapy and surgery for rectal cancer [J].
Benzoni, E ;
Intersimone, D ;
Terrosu, G ;
Bresadola, V ;
Cojutti, A ;
Cerato, F ;
Avellini, C .
JOURNAL OF CLINICAL PATHOLOGY, 2006, 59 (05) :505-512
[5]   The CARTS study: Chemoradiation therapy for rectal cancer in the distal rectum followed by organ-sparing transanal endoscopic microsurgery [J].
Bokkerink, Guus M. J. ;
de Graaf, Eelco J. R. ;
Punt, Cornelis J. A. ;
Nagtegaal, Iris D. ;
Rutten, Heidi ;
Nuyttens, Joost J. M. E. ;
van Meerten, Esther ;
Doornebosch, Pascal G. ;
Tanis, Pieter J. ;
Derksen, Eric J. ;
Dwarkasing, Roy S. ;
Marijnen, Corrie A. M. ;
Cats, Annemieke ;
Tollenaar, Rob A. E. M. ;
de Hingh, Ignace H. J. T. ;
Rutten, Harm J. T. ;
van der Schelling, George P. ;
ten Tije, Albert J. ;
Leijtens, Jeroen W. A. ;
Lammering, Guido ;
Beets, Geerard L. ;
Aufenacker, Theo J. ;
Pronk, Apollo ;
Manusama, Eric R. ;
Hoff, Christiaan ;
Bremers, Andreas J. A. ;
Verhoef, Cornelelis ;
de Wilt, Johannes H. W. .
BMC SURGERY, 2011, 11
[6]   Delta radiomics for rectal cancer response prediction with hybrid 0.35T magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-generating study for an innovative personalized medicine approach [J].
Boldrini, Luca ;
Cusumano, Davide ;
Chiloiro, Giuditta ;
Casa, Calogero ;
Masciocchi, Carlotta ;
Lenkowicz, Jacopo ;
Cellini, Francesco ;
Dinapoli, Nicola ;
Azario, Luigi ;
Teodoli, Stefania ;
Gambacorta, Maria Antonietta ;
De Spirito, Marco ;
Valentini, Vincenzo .
RADIOLOGIA MEDICA, 2019, 124 (02) :145-153
[7]  
Bosman F. T., 2010, WHO classification of tumours of the digestive system
[8]   Progress in colorectal cancer survival in Europe from the late 1980s to the early 21st century: The EUROCARE study [J].
Brenner, Hermann ;
Bouvier, Anne Marie ;
Foschi, Roberto ;
Hackl, Monika ;
Larsen, Inger Kristin ;
Lemmens, Valery ;
Mangone, Lucia ;
Francisci, Silvia .
INTERNATIONAL JOURNAL OF CANCER, 2012, 131 (07) :1649-1658
[9]   Radiomic phenotype features predict pathological response in non-small cell lung cancer [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Narayan, Vivek ;
Hou, Ying ;
Grossmann, Patrick ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2016, 119 (03) :480-486
[10]   Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer [J].
Cusumano, Davide ;
Dinapoli, Nicola ;
Boldrini, Luca ;
Chiloiro, Giuditta ;
Gatta, Roberto ;
Masciocchi, Carlotta ;
Lenkowicz, Jacopo ;
Casa, Calogero ;
Damiani, Andrea ;
Azario, Luigi ;
Van Soest, Johan ;
Dekker, Andre ;
Lambin, Philippe ;
De Spirito, Marco ;
Valentini, Vincenzo .
RADIOLOGIA MEDICA, 2018, 123 (04) :286-295