Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds

被引:12
|
作者
Altafini, Claudio [1 ]
机构
[1] SISSA ISAS, Int Sch Adv Studies, I-34014 Trieste, Italy
关键词
Controllability; Simultaneous controllability; Bilinear control systems; Isospectral evolution; Quantum control; QUANTUM-MECHANICAL SYSTEMS; LIE-GROUPS; SPACE;
D O I
10.1016/j.sysconle.2008.10.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For isospectral bilinear control systems evolving on the so-called complex flag manifolds (i.e., on the orbits of the Hermitian matrices under unitary conjugation action) it is shown that controllability is almost always verified. Easy and generic sufficient conditions are provided. The result applies to the problem of density operator controllability of finite dimensional quantum mechanical systems. In addition, we show that systems having different drifts (corresponding for example to different Larmor frequencies) are simultaneously controllable by the same control field. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 50 条
  • [1] Controllability of control systems on complex simple lie groups and the topology of flag manifolds
    Ariane L. dos Santos
    Luiz A. B. San Martin
    Journal of Dynamical and Control Systems, 2013, 19 : 157 - 171
  • [2] Controllability of control systems on complex simple lie groups and the topology of flag manifolds
    dos Santos, Ariane L.
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (02) : 157 - 171
  • [3] Feedback stabilization of isospectral control systems on complex flag manifolds: Application to quantum ensembles
    Altafini, Claudio
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (11) : 2019 - 2028
  • [4] A survey on the controllability of bilinear systems
    Tie L.
    Cai K.-Y.
    Lin Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2011, 37 (09): : 1040 - 1049
  • [5] Controllability of switched bilinear systems
    Cheng, DZ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (04) : 511 - 515
  • [6] CONTROLLABILITY OF BILINEAR-SYSTEMS
    PIECHOTTKA, U
    FRANK, PM
    AUTOMATICA, 1992, 28 (05) : 1043 - 1045
  • [7] Notions of controllability for bilinear multilevel quantum systems
    Albertini, F
    D'Alessandro, D
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (08) : 1399 - 1403
  • [8] Controllability properties of bilinear systems in dimension 2
    Ayala, Victor
    Cruz, Efrain
    Kliemann, Wolfgang
    Laura-Guarachi, Leonardo R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (04): : 554 - 575
  • [9] On radial and directional controllability of bilinear systems
    Bacciotti, Andrea
    Vivalda, Jean-Claude
    SYSTEMS & CONTROL LETTERS, 2013, 62 (07) : 575 - 580
  • [10] On controllability of discrete-time bilinear systems by near-controllability
    Tie, Lin
    SYSTEMS & CONTROL LETTERS, 2016, 98 : 14 - 24