Accurate object retrieval for high-resolution remote-sensing imagery using high-order topic consistency potentials

被引:3
作者
Zhang, Tong [1 ]
Yan, Wenjie [1 ]
Su, Chunmei [2 ]
Ji, Shunping [3 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Jilin Aerial Remote Sensing Inst, Changchun 130062, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
LATENT DIRICHLET ALLOCATION; SEGMENTATION; RECOGNITION; TEXTURE; MODEL;
D O I
10.1080/01431161.2015.1079662
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We propose incorporating semantic topic information into a hierarchical conditional random fields (CRFs) framework to promote object recognition and retrieval accuracy. Specially, we devise convenient yet effective methods based on multiple segmentations to perform accurate image retrieval tasks for rigid and amorphous man-made objects. Through a robust topic consistency potential (RTCP) modelling approach, we perform accurate multi-class segmentation on high-resolution remote-sensing images. The generated segments can be readily used for object recognition and discovery. We report satisfactory the performance on two sets of high-resolution remote-sensing images that cover a highly populated urban area and a rural area, respectively. Experimental results demonstrate that our approach outperforms the state-of-the-art CRF models, due to its ability to capture inherent semantic information for efficient object recognition and boundary discovery.
引用
收藏
页码:4250 / 4273
页数:24
相关论文
共 33 条
  • [1] [Anonymous], 2007, IEEE C COMP VIS PATT
  • [2] [Anonymous], EUR C COMP VIS ECCV
  • [3] A CORRELATED TOPIC MODEL OF SCIENCE
    Blei, David M.
    Lafferty, John D.
    [J]. ANNALS OF APPLIED STATISTICS, 2007, 1 (01) : 17 - 35
  • [4] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [5] Harmony Potentials
    Boix, Xavier
    Gonfaus, Josep M.
    van de Weijer, Joost
    Bagdanov, Andrew D.
    Serrat, Joan
    Gonzalez, Jordi
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 96 (01) : 83 - 102
  • [6] Boykov Y.Y., 2001, INT C COMP VIS ICCV
  • [7] Mean shift: A robust approach toward feature space analysis
    Comaniciu, D
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (05) : 603 - 619
  • [8] Gould S, 2015, DARWIN DOCUMENTATION
  • [9] Gould S, 2012, IEEE C COMP VIS PATT
  • [10] Gould S, 2012, J MACH LEARN RES, V13, P3533