Nonlinear diffusions, hypercontractivity and the optimal LP-Euclidean logarithmic Sobolev inequality

被引:38
作者
Del Pino, M
Dolbeault, J
Gentil, I
机构
[1] Univ Paris 09, UMR CNRS 7534, CEREMADE, F-75775 Paris 16, France
[2] Univ Chile, FCFM, Dept Ingn Matemat, Santiago, Chile
关键词
optimal L-p-euclidean logarithmic sobolev inequality; sobolev inequality; nonlinear parabolic equations; degenerate parabolic problems; entropy; existence; cauchy problem; uniqueness; regularization; hypercontractivity; ultracontractivity; large deviations; Hamilton-Jacobi equations;
D O I
10.1016/j.jmaa.2003.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equation u(t) = Delta(p)(u(1/(p-1))) for p > 1 is a nonlinear generalization of the heat equation which is also homogeneous, of degree 1. For large time asymptotics, its links with the optimal L-p-Euclidean logarithmic Sobolev inequality have recently been investigated. Here we focus on the existence and the uniqueness of the solutions to the Cauchy problem and on the regularization properties (hypercontractivity and ultracontractivity) of the equation using the L-p-Euclidean logarithmic Sobolev inequality. A large deviation result based on a Hamilton-Jacobi equation and also related to the L-p-Euclidean logarithmic Sobolev inequality is then stated. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 33 条
[1]  
AGUEH M. M.-P., 2002, Existence of Solutions to Degenerate Parabolic Equations via the MongeKantorovich Theory
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]  
ANE C, 2000, PANORAMAS SYNTHESES, V10, P135
[4]   Geometric asymptotics and the logarithmic Sobolev inequality [J].
Beckner, W .
FORUM MATHEMATICUM, 1999, 11 (01) :105-137
[5]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[6]  
BENURIA R, 1979, THESIS PRINCETON U
[7]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[8]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[9]   Nonlinear stability in Lp for a confined system of charged particles [J].
Cáceres, MJ ;
Carrillo, JA ;
Dolbeault, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (02) :478-494
[10]   SUPERADDITIVITY OF FISHER INFORMATION AND LOGARITHMIC SOBOLEV INEQUALITIES [J].
CARLEN, EA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (01) :194-211