η-Invariant and a problem of Berard-Bergery on the existence of closed geodesics

被引:5
|
作者
Tang, Zizhou [1 ]
Zhang, Weiping [2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Eells-Kuiper projective plane; SCp structure; mu invariant; eta invariant; DIFFEOMORPHISM CLASSIFICATION; MANIFOLDS;
D O I
10.1016/j.aim.2013.12.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the eta-invariant of Atiyah Patodi Singer to compute the Eells Kuiper invariant for the Eells Kuiper quaternionic projective plane. By combining with a known result of Berard-Bergery, it shows that every Eells Kuiper quaternionic projective plane carries a Riemannian metric such that all geodesics passing through a certain point are simply closed and of the same length. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条