General parametrization of axisymmetric black holes in metric theories of gravity

被引:213
作者
Konoplya, Roman [1 ]
Rezzolla, Luciano [1 ,2 ]
Zhidenko, Alexander [1 ,3 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
[3] Univ Fed ABC UFABC, Ctr Matemat Comp & Cognicao, Rua Abolicao, BR-09210180 Santo Andre, SP, Brazil
基金
欧洲研究理事会;
关键词
NO-HAIR THEOREM; MULTIPOLE MOMENTS; EVENT-HORIZON; GALACTIC-CENTER; SPACE; SHADOW; FIELD;
D O I
10.1103/PhysRevD.93.064015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Following previous work of ours in spherical symmetry, we here propose a new parametric framework to describe the spacetime of axisymmetric black holes in generic metric theories of gravity. In this case, the metric components are functions of both the radial and the polar angular coordinates, forcing a double expansion to obtain a generic axisymmetric metric expression. In particular, we use a continued-fraction expansion in terms of a compactified radial coordinate to express the radial dependence, while we exploit a Taylor expansion in terms of the cosine of the polar angle for the polar dependence. These choices lead to a superior convergence in the radial direction and to an exact limit on the equatorial plane. As a validation of our approach, we build parametrized representations of Kerr, rotating dilaton, and Einstein-dilaton-Gauss-Bonnet black holes. The match is already very good at lowest order in the expansion and improves as new orders are added. We expect a similar behavior for any stationary and axisymmetric black-hole metric.
引用
收藏
页数:18
相关论文
共 34 条
[1]   A coordinate-independent characterization of a black hole shadow [J].
Abdujabbarov, A. A. ;
Rezzolla, L. ;
Ahmedov, B. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 454 (03) :2423-2435
[2]   No observational proof of the black-hole event-horizon [J].
Abramowicz, MA ;
Kluzniak, W ;
Lasota, JP .
ASTRONOMY & ASTROPHYSICS, 2002, 396 (03) :L31-L34
[3]  
[Anonymous], IN PRESS
[4]  
[Anonymous], ARXIV12116299
[5]  
[Anonymous], 2013, Relativistic Hydrodynamics
[6]   Slowly rotating black holes in Einstein-Dilaton-Gauss-Bonnet gravity: Quadratic order in spin solutions [J].
Ayzenberg, Dimitry ;
Yunes, Nicolas .
PHYSICAL REVIEW D, 2014, 90 (04)
[7]   Apparent shape of super-spinning black holes [J].
Bambi, Cosimo ;
Freese, Katherine .
PHYSICAL REVIEW D, 2009, 79 (04)
[8]   TESTING THE NO-HAIR THEOREM WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF SAGITTARIUS A [J].
Broderick, Avery E. ;
Johannsen, Tim ;
Loeb, Abraham ;
Psaltis, Dimitrios .
ASTROPHYSICAL JOURNAL, 2014, 784 (01)
[9]   On generic parametrizations of spinning black-hole geometries [J].
Cardoso, Vitor ;
Pani, Paolo ;
Rico, Joao .
PHYSICAL REVIEW D, 2014, 89 (06)
[10]   How to tell a gravastar from a black hole [J].
Chirenti, Cecilia B. M. H. ;
Rezzolla, Luciano .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (16) :4191-4206