On mathematical modelling of linear flexural vibrations of spinning Rayleigh beams

被引:12
作者
Aouadi, Mohamed Amine [1 ]
Lakrad, Faouzi [1 ]
机构
[1] Univ Hassan II Casablanca, Fac Sci Ain Chock, Lab Renewable Energy & Dynam Syst, BP 5366Maarif, Casablanca, Morocco
关键词
Spinning Rayleigh beam; Nonconstant spinning velocity; 3D bending vibrations; Linearization schemes; Stability analysis; DYNAMIC STABILITY;
D O I
10.1016/j.jsv.2018.05.022
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The present paper discusses the linearization schemes effects on the mathematical modelling of 3D bending vibrations of a spinning Rayleigh beam. Indeed, four linearization approaches, that differ according to the stage of introduction of the linearization process in the computations, are discussed. It is shown that the linearization scheme influences the centrifugal and Euler forces terms. Consequently, the use of early linearization schemes in the case of Rayleigh beams should be done with caution especially for high spinning velocities and low slenderness ratios. Moreover, it is shown that the stability zones are also affected by the used scheme. Furthermore, it is proven that the linear equations of 3D flexural vibrations of spinning Euler-Bernoulli beams are independent of the linearization scheme. On the other hand, the present work presents a general mathematical model that encompasses all linear models, obeying the same assumptions, of bending vibrations of spinning Rayleigh beams with nonconstant spinning velocities either expressed in the rotating or in the inertial frames. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 35
页数:19
相关论文
共 22 条
[1]  
[Anonymous], 2005, MECH ENG SE
[3]   NON-LINEAR FLEXURAL-FLEXURAL-TORSIONAL DYNAMICS OF INEXTENSIONAL BEAMS .1. EQUATIONS OF MOTION [J].
CRESPODASILVA, MRM ;
GLYNN, CC .
JOURNAL OF STRUCTURAL MECHANICS, 1978, 6 (04) :437-448
[4]   Nonlinear analysis of rotating nanocrystalline silicon microbeams for microgyroscope applications [J].
Ghommem, M. ;
Abdelkefi, A. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (12) :5931-5946
[5]   Modeling and performance study of a beam microgyroscope [J].
Ghommem, M. ;
Nayfeh, A. H. ;
Choura, S. ;
Najar, F. ;
Abdel-Rahman, E. M. .
JOURNAL OF SOUND AND VIBRATION, 2010, 329 (23) :4970-4979
[6]   Model reduction and analysis of a vibrating beam microgyroscope [J].
Ghommem, Mehdi ;
Nayfeh, Ali H. ;
Choura, Slim .
JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (08) :1240-1249
[7]   EFFECTS OF NONCONSTANT SPIN RATE ON THE VIBRATION OF A ROTATING BEAM [J].
KAMMER, DC ;
SCHLACK, AL .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1987, 54 (02) :305-310
[8]   Non-conservative stability of spinning pretwisted cantilever beams [J].
Karimi-Nobandegani, A. ;
Fazelzadeh, S. A. ;
Ghavanloo, E. .
JOURNAL OF SOUND AND VIBRATION, 2018, 412 :130-147
[9]   THE DYNAMIC-RESPONSE OF A ROTATING SHAFT SUBJECT TO A MOVING LOAD [J].
KATZ, R ;
LEE, CW ;
ULSOY, AG ;
SCOTT, RA .
JOURNAL OF SOUND AND VIBRATION, 1988, 122 (01) :131-148
[10]   On modeling beam-rigid-body microgyroscopes [J].
Lajimi, S. A. Mousavi ;
Heppler, G. R. ;
Abdel-Rahman, E. .
APPLIED MATHEMATICAL MODELLING, 2017, 42 :753-760