Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles

被引:64
作者
Chaudhary, V. [1 ,2 ,3 ]
Repaka, D. V. Maheswar [3 ]
Chaturvedi, A. [3 ]
Sridhar, I. [4 ]
Ramanujan, R. V. [3 ]
机构
[1] Nanyang Technol Univ, Interdisciplinary Grad Sch, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU ERI N, Singapore 637553, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
REFRIGERATION; NICKEL;
D O I
10.1063/1.4900736
中图分类号
O59 [应用物理学];
学科分类号
摘要
Low cost magnetocaloric nanomaterials have attracted considerable attention for energy efficient applications. We report a very high relative cooling power (RCP) in a study of the magnetocaloric effect in quenched FeNiB nanoparticles. RCP increases from 89.8 to 640 J kg(-1) for a field change of 1 and 5 T, respectively, these values are the largest for rare earth free iron based magnetocaloric nanomaterials. To investigate the magnetocaloric behavior around the Curie temperature (T-C), the critical behavior of these quenched nanoparticles was studied. Detailed analysis of the magnetic phase transition using the modified Arrott plot, Kouvel-Fisher method, and critical isotherm plots yields critical exponents of beta = 0.364, gamma = 1.319, delta = 4.623, and alpha = -0.055, which are close to the theoretical exponents obtained from the 3D-Heisenberg model. Our results indicate that these FeNiB nanoparticles are potential candidates for magnetocaloric fluid based heat pumps and low grade waste heat recovery. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 56 条
[11]   Optimization of the refrigerant capacity in multiphase magnetocaloric materials [J].
Caballero-Flores, R. ;
Franco, V. ;
Conde, A. ;
Knipling, K. E. ;
Willard, M. A. .
APPLIED PHYSICS LETTERS, 2011, 98 (10)
[12]  
Chaudhary V., 2014, MRS P, V1708
[13]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[14]   Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(CaSr)0.3Mn0.9V0.1O3 [J].
Dhahri, A. ;
Rhouma, F. I. H. ;
Mnefgui, S. ;
Dhahri, J. ;
Hlil, E. K. .
CERAMICS INTERNATIONAL, 2014, 40 (01) :459-464
[15]   Magnetic properties of nearly defect-free maghemite nanocrystals [J].
Dutta, P ;
Manivannan, A ;
Seehra, MS ;
Shah, N ;
Huffman, GP .
PHYSICAL REVIEW B, 2004, 70 (17) :1-7
[16]   Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance [J].
Engelbrecht, K. ;
Bahl, C. R. H. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
[17]   Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO3 [J].
Fan, Jiyu ;
Ling, Langsheng ;
Hong, Bo ;
Zhang, Lei ;
Pi, Li ;
Zhang, Yuheng .
PHYSICAL REVIEW B, 2010, 81 (14)
[18]   The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models [J].
Franco, V. ;
Blazquez, J. S. ;
Ingale, B. ;
Conde, A. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 42, 2012, 42 :305-342
[19]   Magnetocaloric effect and critical exponents of Fe77Co5.5Ni5.5Zr7B4Cu1: A detailed study [J].
Franco, V. ;
Caballero-Flores, R. ;
Conde, A. ;
Knipling, K. E. ;
Willard, M. A. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[20]   Field dependence of the magnetocaloric effect in materials with a second order phase transition:: A master curve for the magnetic entropy change [J].
Franco, V. ;
Blazquez, J. S. ;
Conde, A. .
APPLIED PHYSICS LETTERS, 2006, 89 (22)