3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor

被引:38
作者
Lu, Xufei [1 ,2 ]
Zhao, Tingkai [1 ,2 ]
Ji, Xianglin [1 ,2 ]
Hu, Jingtian [1 ,2 ]
Li, Tiehu [1 ,2 ]
Lin, Xin [1 ,2 ]
Huang, Weidong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Shaanxi Engn Lab Graphene New Carbon Mat & Applic, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, MIIT China, Key Lab Met High Performance Addit Mfg & Innovat, Xian 710072, Shaanxi, Peoples R China
关键词
3D printing; Supercapacitor; PANI; REDUCTION;
D O I
10.1016/j.jallcom.2018.05.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
3D printing is a fast-emerging technology, and a shape is fabricated using layer-by-layer deposition of a material in a bottom-up manufacturing operation. Here a porous nickel/polyaniline nanocages multiscale supercapacitor synthesized using 3D printing technology is fabricated. The porous structure of iron-nickel and polyaniline nanocages can increase the specific surface area which lead to enhance the specific capacitance. 3D printing technology is presented in energy devices to accurately fabricate the delicate structure. (C)2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 83
页数:6
相关论文
共 18 条
[11]   Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode [J].
Ramadesigan, Venkatasailanathan ;
Methekar, Ravi N. ;
Latinwo, Folarin ;
Braatz, Richard D. ;
Subramanian, Venkat R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (12) :A1328-A1334
[12]   Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides [J].
Sevilla, Marta ;
Fuertes, Antonio B. .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (16) :4195-4203
[13]   Three-dimensional bioassembly tool for generating viable tissue-engineered constructs [J].
Smith, CM ;
Stone, AL ;
Parkhill, RL ;
Stewart, RL ;
Simpkins, MW ;
Kachurin, AM ;
Warren, WL ;
Williams, SK .
TISSUE ENGINEERING, 2004, 10 (9-10) :1566-1576
[14]   The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting [J].
Stamp, R. ;
Fox, P. ;
O'Neill, W. ;
Jones, E. ;
Sutcliffe, C. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2009, 20 (09) :1839-1848
[15]   3D Printing of Interdigitated Li-Ion Microbattery Architectures [J].
Sun, Ke ;
Wei, Teng-Sing ;
Ahn, Bok Yeop ;
Seo, Jung Yoon ;
Dillon, Shen J. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2013, 25 (33) :4539-4543
[16]   Reduction of tungsten oxides with carbon monoxide [J].
Venables, DS ;
Brown, ME .
THERMOCHIMICA ACTA, 1997, 291 (1-2) :131-140
[17]   Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system [J].
Wang, XH ;
Yan, YN ;
Pan, YQ ;
Xiong, Z ;
Liu, HX ;
Cheng, B ;
Liu, F ;
Lin, F ;
Wu, RD ;
Zhang, RJ ;
Lu, QP .
TISSUE ENGINEERING, 2006, 12 (01) :83-90
[18]   Rapid Prototyping: Porous Titanium Alloy Scaffolds Produced by Selective Laser Melting for Bone Tissue Engineering [J].
Warnke, Patrick H. ;
Douglas, Timothy ;
Wollny, Patrick ;
Sherry, Eugene ;
Steiner, Martin ;
Galonska, Sebastian ;
Becker, Stephan T. ;
Springer, Ingo N. ;
Wiltfang, Joerg ;
Sivananthan, Sureshan .
TISSUE ENGINEERING PART C-METHODS, 2009, 15 (02) :115-124