Energy density inhomogeneities with polynomial f(R) cosmology

被引:54
作者
Sharif, M. [1 ]
Yousaf, Z. [1 ]
机构
[1] Univ Punjab, Dept Math, Lahore 54590, Pakistan
关键词
Dissipative systems; Relativistic systems; Modified gravity; DYNAMICAL INSTABILITY; ELECTROMAGNETIC-FIELD; LOCAL ANISOTROPY; MODIFIED GRAVITY; STABILITY; COLLAPSE; STAR; MODEL; SINGULARITY; MATTER;
D O I
10.1007/s10509-014-1913-z
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the effects of polynomial f(R) model on the stability of homogeneous energy density in self-gravitating spherical stellar object. For this purpose, we construct couple of evolution equations which relate the Weyl tensor with matter parameters. We explore different factors responsible for density inhomogeneities with non-dissipative dust, isotropic as well as anisotropic fluids and dissipative dust cloud. We find that shear, pressure, dissipative parameters and f(R) terms affect the existence of inhomogeneous energy density.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 62 条
[1]  
Bamba K., 2012, TSPU B, V3, P19
[2]   Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests [J].
Bamba, Kazuharu ;
Capozziello, Salvatore ;
Nojiri, Shin'ichi ;
Odintsov, Sergei D. .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (01) :155-228
[3]   Time-dependent matter instability and star singularity in F(R) gravity [J].
Bamba, Kazuharu ;
Nojiri, Shin'ichi ;
Odintsov, Sergei D. .
PHYSICS LETTERS B, 2011, 698 (05) :451-456
[4]   Bounds on the basic physical parameters for anisotropic compact general relativistic objects [J].
Bohmer, C. G. ;
Harko, T. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (22) :6479-6491
[5]   Spherical collapse in f(R) gravity [J].
Borisov, Alexander ;
Jain, Bhuvnesh ;
Zhang, Pengjie .
PHYSICAL REVIEW D, 2012, 85 (06)
[6]   ANISOTROPIC SPHERES IN GENERAL RELATIVITY [J].
BOWERS, RL ;
LIANG, EPT .
ASTROPHYSICAL JOURNAL, 1974, 188 (03) :657-665
[7]   Curvature quintessence [J].
Capozziello, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (04) :483-491
[8]   TIME FUNCTIONS IN NUMERICAL RELATIVITY - MARGINALLY BOUND DUST COLLAPSE [J].
EARDLEY, DM ;
SMARR, L .
PHYSICAL REVIEW D, 1979, 19 (08) :2239-2259
[9]   Republication of: Relativistic cosmology (Reprinted) [J].
Ellis, George F. R. .
GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (03) :581-660
[10]   Stability of modified gravity models [J].
Faraoni, V ;
Nadeau, S .
PHYSICAL REVIEW D, 2005, 72 (12)