Magnetic structure of the antiferromagnetic half-Heusler compound NdBiPt

被引:26
作者
Mueller, R. A. [1 ]
Desilets-Benoit, A. [1 ]
Gauthier, N. [1 ]
Lapointe, L. [1 ]
Bianchi, A. D. [1 ]
Maris, T. [2 ]
Zahn, R. [3 ]
Beyer, R. [3 ]
Green, E. [3 ]
Wosnitza, J. [3 ]
Yamani, Z. [4 ]
Kenzelmann, M. [5 ]
机构
[1] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada
[3] Helmholtz Zentrum Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD EMFL, Dresden, Germany
[4] CNR, Canadian Neutron Beam Ctr, Chalk River, ON, Canada
[5] Paul Scherrer Inst, Lab Sci Dev & Novel Mat, Villigen, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
DEPENDENT FERMI-SURFACE; STATE; PHASE;
D O I
10.1103/PhysRevB.92.184432
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present results of single-crystal neutron-diffraction experiments on the rare-earth, half-Heusler antiferromagnet (AFM) NdBiPt. This compound exhibits an AFM phase transition at T-N = 2.18 K with an ordered moment of 1.78(9) mu(B) per Nd atom. The magnetic moments are aligned along the [001] direction, arranged in a type-I AFM structure with ferromagnetic planes, alternating antiferromagnetically along a propagation vector tau of (100). The RBiPt (R = Ce-Lu) family of materials has been proposed as candidates for a new family of antiferromagnetic topological insulators (AFTIs) with a magnetic space group that corresponds to a type-II AFM structure where ferromagnetic sheets are stacked along the space diagonal. The resolved structure makes it unlikely that NdBiPt qualifies as an AFTI.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Half-Heusler d0-d gapless semiconductors as strong Z2 topological insulators [J].
Safavi, Maryam ;
Davatolhagh, Saeid ;
Dehghan, Ali ;
Moradi, Mahmood .
MATERIALS CHEMISTRY AND PHYSICS, 2023, 295
[42]   d0-d half-Heusler compounds as a potential class of three-dimensional Chern insulators [J].
Dehghan, Ali ;
Davatolhagh, Saeid .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2022, 280
[43]   Theoretical investigation of electronic, mechanical, piezoelectric and thermodynamic properties of half-heusler LiBeAsxSb1-x alloys [J].
Benyettou, S. ;
Saib, S. ;
Bouarissa, N. ;
Thatribud, A. .
PHYSICA SCRIPTA, 2023, 98 (08)
[44]   Theoretical calculations on half-metallic results properties of FeZrX (X = P, As, Sb and Bi) half-Heusler compounds: density functional theory [J].
Ozdemir, Evren G. ;
Merdan, Ziya .
MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
[45]   First principle based investigation of topological insulating phase in half-Heusler family NaYO (Y = Ag, Au, and Cu) [J].
Kore, Ashish ;
Ara, Nisa ;
Singh, Poorva .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (20)
[46]   Influence of elastic energy on the microstructure of nano TiNi2Sn precipitates within a Half-Heusler TiNiSn matrix [J].
Shmulevitsh, M. ;
Gelbstein, Y. ;
Chai, Y. W. ;
Shneck, R. Z. .
ACTA MATERIALIA, 2025, 296
[47]   Structural and optoelectronic properties of LiYP (Y = Ca, Mg, and Zn) half-Heusler alloy under pressure: A DFT study [J].
Miri, Mohammed ;
Ziat, Younes ;
Belkhanchi, Hamza ;
Zarhri, Zakaryaa ;
El Kadi, Youssef Ait .
PHYSICA B-CONDENSED MATTER, 2023, 667
[48]   Temperature Dependent n-Type Self Doping in Nominally 19-Electron Half-Heusler Thermoelectric Materials [J].
Anand, Shashwat ;
Xia, Kaiyang ;
Zhu, Tiejun ;
Wolverton, Chris ;
Snyder, Gerald Jeffrey .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[49]   Microwave synthesis and enhancement of thermoelectric performance in HfxTi1-xNiSn0.97Sb0.03 half-Heusler bulks [J].
Lei, Ying ;
Li, Yu ;
Wan, Run-Dong ;
Chen, Wen ;
Zhou, Hong-Wei .
RARE METALS, 2023, 42 (11) :3780-3786
[50]   Insight into elastic anisotropy, mechanical and dynamical stability, electronic properties, bonding and weak interactions analysis of LuAuSn Half-Heusler [J].
Bouafia, H. ;
Sahli, B. ;
Bousmaha, M. ;
Djebour, B. ;
Dorbane, A. ;
Mokrane, S. ;
Hiadsi, S. .
SOLID STATE SCIENCES, 2021, 118