A Subspace-Based Multinomial Logistic Regression for Hyperspectral Image Classification

被引:77
作者
Khodadadzadeh, Mahdi [1 ]
Li, Jun [2 ]
Plaza, Antonio [1 ]
Bioucas-Dias, Jose M. [3 ,4 ]
机构
[1] Univ Extremadura, Escuela Politecn, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Caceres 10071, Spain
[2] Sun Yat Sen Univ, Sch Geog & Planning, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Lisbon, Inst Telecomunicacoes, P-1649004 Lisbon, Portugal
[4] Univ Lisbon, Inst Super Tecn, P-1649004 Lisbon, Portugal
关键词
Hyperspectral imaging; pixelwise classification; subspace multinomial logistic regression (MLR); FEATURE-SELECTION; SMLR;
D O I
10.1109/LGRS.2014.2320258
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we propose a multinomial-logistic-regression method for pixelwise hyperspectral classification. The feature vectors are formed by the energy of the spectral vectors projected on class-indexed subspaces. In this way, we model not only the linear mixing process that is often present in the hyperspectral measurement process but also the nonlinearities that are separable in the feature space defined by the aforementioned feature vectors. Our experimental results have been conducted using both simulated and real hyperspectral data sets, which are collected using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Reflective Optics System Imaging Spectrographic (ROSIS) system. These results indicate that the proposed method provides competitive results in comparison with other state-of-the-art approaches.
引用
收藏
页码:2105 / 2109
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2007, Hyperspectral data exploitation: theory and applications
[2]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[3]   MULTINOMIAL LOGISTIC-REGRESSION ALGORITHM [J].
BOHNING, D .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (01) :197-200
[4]   Bayesian Hyperspectral Image Segmentation With Discriminative Class Learning [J].
Borges, Janete S. ;
Bioucas-Dias, Jose M. ;
Marcal, Andre R. S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2151-2164
[5]   Logistic regression for feature selection and soft classification of remote sensing data [J].
Cheng, Qi ;
Varshney, Pramod K. ;
Arora, Manoj K. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (04) :491-494
[6]  
Figueiredo MAT, 2005, LECT NOTES COMPUT SC, V3757, P74, DOI 10.1007/11585978_6
[7]   Sparse multinomial logistic regression: Fast algorithms and generalization bounds [J].
Krishnapuram, B ;
Carin, L ;
Figueiredo, MAT ;
Hartemink, AJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (06) :957-968
[8]   Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03) :809-823
[9]   Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3947-3960
[10]   Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11) :4085-4098