Univalency of convolutions of harmonic mappings

被引:13
作者
Boyd, Z. [1 ]
Dorff, M. [1 ]
Nowak, M. [2 ]
Romney, M. [3 ]
Woloszkiewicz, M. [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Marie Curie Sklodowska Univ, Dept Math, PL-20031 Lublin, Poland
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Harmonic mappings; Convolutions; Univalence;
D O I
10.1016/j.amc.2014.01.162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the convolution or Hadamard product of planar harmonic mappings that are the vertical shears of the canonical half-plane mapping phi(z)=z/(1-z)with respective dilatations -xz and -yz, where vertical bar x vertical bar = vertical bar y vertical bar = 1. We prove that any such convolution is univalent. Furthermore, in the case that x = y = -1, we show the resulting convolution is convex. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:326 / 332
页数:7
相关论文
共 11 条
[1]   HARMONIC-MAPPINGS ONTO CONVEX DOMAINS [J].
ABUMUHANNA, Y ;
SCHOBER, G .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1987, 39 (06) :1489-1530
[2]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[3]  
Dorff M., 2001, Complex Variables Theory Appl., V45, P263
[4]   Convolutions of harmonic convex mappings [J].
Dorff, Michael ;
Nowak, Maria ;
Woloszkiewicz, Magdalena .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (05) :489-503
[5]  
Duren P., 2004, CAMBRIDGE TRACTS MAT, P156
[6]  
Goodloe M., 2002, Complex. Var. Theory Appl, V47, P81, DOI DOI 10.1080/02781070290010841
[7]  
HENGARTNER W, 1987, T AM MATH SOC, V299, P1
[8]  
Hoffman K., 1962, Banach Spaces of Analytic Functions
[9]  
Koosis P, 1998, Introduction to H p Spaces, Vsecond
[10]  
Royster W.C., 1976, Publ. Math. (Debr.), V23, P339