Lung cancer prediction using machine learning and advanced imaging techniques

被引:66
作者
Kadir, Timor [1 ]
Gleeson, Fergus [2 ]
机构
[1] Optellum Ltd, Oxford, England
[2] Oxford Univ Hosp NHS Fdn Trust, Dept Radiol, Oxford, England
基金
“创新英国”项目;
关键词
Pulmonary nodules; lung neoplasms; lung; machine learning; decision making; SOLITARY PULMONARY NODULES; CT; PROBABILITY; CLASSIFICATION; PERFORMANCE; MANAGEMENT; RADIOMICS; IMAGES;
D O I
10.21037/tlcr.2018.05.15
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Machine learning based lung cancer prediction models have been proposed to assist clinicians in managing incidental or screen detected indeterminate pulmonary nodules. Such systems may be able to reduce variability in nodule classification, improve decision making and ultimately reduce the number of benign nodules that are needlessly followed or worked-up. In this article, we provide an overview of the main lung cancer prediction approaches proposed to date and highlight some of their relative strengths and weaknesses. We discuss some of the challenges in the development and validation of such techniques and outline the path to clinical adoption.
引用
收藏
页码:304 / 312
页数:9
相关论文
共 26 条
  • [1] Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening
    Aberle, Denise R.
    Adams, Amanda M.
    Berg, Christine D.
    Black, William C.
    Clapp, Jonathan D.
    Fagerstrom, Richard M.
    Gareen, Ilana F.
    Gatsonis, Constantine
    Marcus, Pamela M.
    Sicks, JoRean D.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) : 395 - 409
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] LUNGx Challenge for computerized lung nodule classification
    Armato, Samuel G., III
    Drukker, Karen
    Li, Feng
    Hadjiiski, Lubomir
    Tourassi, Georgia D.
    Engelmann, Roger M.
    Giger, Maryellen L.
    Redmond, George
    Farahani, Keyvan
    Kirby, Justin S.
    Clarke, Laurence P.
    [J]. JOURNAL OF MEDICAL IMAGING, 2016, 3 (04)
  • [4] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    [J]. MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931
  • [5] Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists' detection performance
    Awai, K
    Murao, K
    Ozawa, A
    Komi, M
    Hayakawa, H
    Hori, S
    Nishimura, Y
    [J]. RADIOLOGY, 2004, 230 (02) : 347 - 352
  • [6] Bartlett EC, INTEROBSERVER VARIAT
  • [7] British Thoracic Society guidelines for the investigation and management of pulmonary nodules
    Callister, M. E. J.
    Baldwin, D. R.
    Akram, A. R.
    Barnard, S.
    Cane, P.
    Draffan, J.
    Franks, K.
    Gleeson, F.
    Graham, R.
    Malhotra, P.
    Prokop, M.
    Rodger, K.
    Subesinghe, M.
    Waller, D.
    Woolhouse, I.
    [J]. THORAX, 2015, 70 : 1 - 54
  • [8] False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review
    Chalkidou, Anastasia
    O'Doherty, Michael J.
    Marsden, Paul K.
    [J]. PLOS ONE, 2015, 10 (05):
  • [9] Towards automatic pulmonary nodule management in lung cancer screening with deep learning
    Ciompi, Francesco
    Chung, Kaman
    van Riel, Sarah J.
    Setio, Arnaud Arindra Adiyoso
    Gerke, Paul K.
    Jacobs, Colin
    Scholten, Ernst Th.
    Schaefer-Prokop, Cornelia
    Wille, Mathilde M. W.
    Marchiano, Alfonso
    Pastorino, Ugo
    Prokop, Mathias
    van Ginneken, Bram
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Predicting Lung Cancer Prior to Surgical Resection in Patients with Lung Nodules
    Deppen, Stephen A.
    Blume, Jeffrey D.
    Aldrich, Melinda C.
    Fletcher, Sarah A.
    Massion, Pierre P.
    Walker, Ronald C.
    Chen, Heidi C.
    Speroff, Theodore
    Degesys, Catherine A.
    Pinkerman, Rhonda
    Lambright, Eric S.
    Nesbitt, Jonathan C.
    Putnam, Joe B., Jr.
    Grogan, Eric L.
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2014, 9 (10) : 1477 - 1484