Faber polynomial coefficient bounds for a subclass of bi-univalent functions

被引:46
作者
Altinkaya, Sahsene [1 ]
Yalcin, Sibel [1 ]
机构
[1] Uludag Univ, Fac Arts & Sci, Dept Math, Bursa, Turkey
关键词
D O I
10.1016/j.crma.2015.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, considering a general subclass of bi-univalent functions and using the Faber polynomials, we obtain coefficient expansions for functions in this class. In certain cases, our estimates improve some of those existing coefficient bounds. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1075 / 1080
页数:6
相关论文
共 29 条
[1]   Differential calculus on the Faber polynomials [J].
Airault, H ;
Bouali, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :179-222
[2]   An algebra of differential operators and generating functions on the set of univalent functions [J].
Airault, H ;
Ren, JG .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05) :343-367
[3]  
Airault H., 2007, C GROUPS SYMM MONTR
[4]  
Airault H., 2008, INT MATH FORUM, V3, P449
[5]   Initial Coefficient Bounds for a General Class of Biunivalent Functions [J].
Altinkaya, Sahsene ;
Yalcin, Sibel .
INTERNATIONAL JOURNAL OF ANALYSIS, 2014,
[6]  
Altinkaya S, 2015, TWMS J PURE APPL MAT, V6, P180
[7]  
Brannan D.A., 1979, P NATO ADV STUD I U
[8]  
Brannan D.A., 1986, Stud. Univ. Babes-Bolyai Math, V31, P70, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[9]  
Bulut S., 2015, C R ACAD 1 IN PRESS
[10]  
Cripn O., 2013, GEN MATH NOTES, V16, P93