Is graphene a good transparent electrode for photovoltaics and display applications?

被引:25
作者
Bointon, Thomas H. [1 ]
Russo, Saverio [1 ]
Craciun, Monica Felicia [1 ]
机构
[1] Univ Exeter, Ctr Graphene Sci, CEMPS, Exeter EX4 4QL, Devon, England
基金
英国工程与自然科学研究理事会;
关键词
indium compounds; graphene devices; conductors (electric); electrodes; display devices; photovoltaic cells; visible spectra; graphene-based conductor; transparent electrode; photovoltaics applications; display applications; current standard material; touch screens; solar cells; indium tin oxide; sheet resistance; optical transmission; visible wavelength; flexible transparent conductors; optical transparency; mechanical flexibility; mechanical strength; functionalised graphene; ferric chloride; flexible material; transparent material; electrical properties; structural properties; ITO; C; DRY TRANSFER; INTERCALATION COMPOUNDS; EPITAXIAL GRAPHENE; LAYER; FILMS; TRANSPORT;
D O I
10.1049/iet-cds.2015.0121
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The current standard material used for transparent electrodes in displays, touch screens and solar cells is indium tin oxide (ITO) which has low sheet resistance (10 /), high optical transmission in the visible wavelength (85%) and does not suffer of optical haze. However, ITO is mechanically rigid and incompatible with future demands for flexible applications. Graphene materials share many of the properties desirable for flexible transparent conductors, including high optical transparency, high mechanical flexibility and strength. Whilst pristine graphene is not a good transparent conductor, functionalised graphene is at least 1000 times a better conductor than its pristine counterpart and it outperforms ITO. Here the authors review recent work on a novel graphene-based conductor with sheet resistance as low as 8.8 / and 84% optical transmission. This material is obtained by ferric chloride (FeCl3) intercalation into few-layer-graphene (FLG), giving rise to a new system which is the best known flexible and transparent electricity conductor. FeCl3-FLG shows no significant changes in the electrical and structural properties for a long exposure to air, to high levels of humidity and at temperatures of up to 150 degrees C in atmosphere. These properties position FeCl3-FLG as a viable and attractive replacement to ITO.
引用
收藏
页码:403 / 412
页数:10
相关论文
共 60 条
[1]   THIN-FILM MAGNETISM [J].
BADER, SD .
PROCEEDINGS OF THE IEEE, 1990, 78 (06) :909-922
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation [J].
Bao, Wenzhong ;
Wan, Jiayu ;
Han, Xiaogang ;
Cai, Xinghan ;
Zhu, Hongli ;
Kim, Dohun ;
Ma, Dakang ;
Xu, Yunlu ;
Munday, Jeremy N. ;
Drew, H. Dennis ;
Fuhrer, Michael S. ;
Hu, Liangbing .
NATURE COMMUNICATIONS, 2014, 5
[4]   Approaching Magnetic Ordering in Graphene Materials by FeCl3 Intercalation [J].
Bointon, Thomas Hardisty ;
Khrapach, Ivan ;
Yakimova, Rositza ;
Shytov, Andrey V. ;
Craciun, Monica F. ;
Russo, Saverio .
NANO LETTERS, 2014, 14 (04) :1751-1755
[5]   Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates [J].
Caldwell, Joshua D. ;
Anderson, Travis J. ;
Culbertson, James C. ;
Jernigan, Glenn G. ;
Hobart, Karl D. ;
Kub, Fritz J. ;
Tadjer, Marko J. ;
Tedesco, Joseph L. ;
Hite, Jennifer K. ;
Mastro, Michael A. ;
Myers-Ward, Rachael L. ;
Eddy, Charles R., Jr. ;
Campbell, Paul M. ;
Gaskill, D. Kurt .
ACS NANO, 2010, 4 (02) :1108-1114
[6]   Properties and applications of chemically functionalized graphene [J].
Craciun, M. F. ;
Khrapach, I. ;
Barnes, M. D. ;
Russo, S. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (42)
[7]   Tuneable electronic properties in graphene [J].
Craciun, M. F. ;
Russo, S. ;
Yamamoto, M. ;
Tarucha, S. .
NANO TODAY, 2011, 6 (01) :42-60
[8]  
Craciun MF, 2009, NAT NANOTECHNOL, V4, P383, DOI [10.1038/nnano.2009.89, 10.1038/NNANO.2009.89]
[9]   Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? [J].
De, Sukanta ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (05) :2713-2720
[10]   INTERCALATION COMPOUNDS OF GRAPHITE [J].
DRESSELHAUS, MS ;
DRESSELHAUS, G .
ADVANCES IN PHYSICS, 1981, 30 (02) :139-326