First principles studies on hydrogen storage in single-walled carbon nanotube functionalized with TiO2

被引:24
作者
Kanmani, M. [1 ]
Lavanya, R. [1 ]
Silambarasan, D. [1 ]
Iyakutti, K. [2 ]
Vasu, V. [1 ]
Kawazoe, Y. [3 ]
机构
[1] Madurai Kamaraj Univ, Sch Phys, Thin Film Lab, Madurai 625021, Tamil Nadu, India
[2] SRM Univ, Dept Phys & Nanotechnol, Kattaankulathur 603203, Tamil Nadu, India
[3] Tohoku Univ, New Ind Creat Hatchery Ctr, Sendai, Miyagi 9808579, Japan
关键词
SWCNT; TiO2; Functionalization; Hydrogen storage capacity; PHYSISORPTION; ADSORPTION; ENERGY;
D O I
10.1016/j.ssc.2013.12.017
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this first principles study, hydrogen storage capacity of armchair single-walled carbon nanotube (10, 10) functionalized with TiO2 has been investigated. The functionalized TiO2 molecules are found to be chemisorbed on CNT (10, 10) with the binding energy of 3.54 eV. The functionalized CNT binds up to six hydrogen molecules. The first hydrogen adsorption is dissociative with the binding energy of 1.51 eV and the further adsorbed hydrogen are weakly chemisorbed on the functionalized system with the elongated bond length of hydrogen. The storage capacity of functionalized SWCNT, desorption temperature and binding energy of hydrogen molecules are evaluated. The system exhibits a maximum storage capacity of 3.64 wt%. The band structure, density of states (DOS) and partial density of states (PDOS) are calculated for the functionalizecl and hydrogenated SWCNTs. DOS studies reveal that functionalization and hydrogenation does not affect the metallic nature of CNT (C) 2013 Elsevier Ltd. All rights reserved
引用
收藏
页码:1 / 7
页数:7
相关论文
共 32 条
[1]  
[Anonymous], 2003, Mater. Today, DOI [10.1016/S1369-7021(03)00922-2, DOI 10.1016/S1369-7021(03)00922-2]
[2]   Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes [J].
Arellano, JS ;
Molina, LM ;
Rubio, A ;
López, MJ ;
Alonso, JA .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (05) :2281-2288
[3]   Storage of hydrogen by physisorption on carbon and nanostructured materials [J].
Benard, Pierre ;
Chahine, Richard .
SCRIPTA MATERIALIA, 2007, 56 (10) :803-808
[4]   Density functional study of molecular hydrogen coverage on carbon nanotubes [J].
Cabria, I ;
López, MJ ;
Alonso, JA .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 35 (03) :238-242
[5]   Decorating carbon nanotubes with nanoparticles using a facile redox displacement reaction and an evaluation of synergistic hydrogen storage performance [J].
Chang, Jeng-Kuei ;
Chen, Chih-Yao ;
Tsai, Wen-Ta .
NANOTECHNOLOGY, 2009, 20 (49)
[6]   Hydrogen storage in aligned carbon nanotubes [J].
Chen, Y ;
Shaw, DT ;
Bai, XD ;
Wang, EG ;
Lund, C ;
Lu, WM ;
Chung, DDL .
APPLIED PHYSICS LETTERS, 2001, 78 (15) :2128-2130
[7]   GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays [J].
Cheng, JR ;
Yuan, XH ;
Zhao, L ;
Huang, DC ;
Zhao, M ;
Dai, L ;
Ding, R .
CARBON, 2004, 42 (10) :2019-2024
[8]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[9]   Electronic, thermal and mechanical properties of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Charlier, JC ;
Hernández, E .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1823) :2065-2098
[10]   Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage [J].
Durgun, E. ;
Ciraci, S. ;
Yildirim, T. .
PHYSICAL REVIEW B, 2008, 77 (08)