Modelling of ICRF heating for JET T and D-T plasmas

被引:3
作者
Gallart, D. [1 ,2 ]
Mantsinen, M. J. [1 ,2 ,3 ]
Jacquet, P. [1 ,4 ]
Kirov, K. [1 ,4 ]
Lerche, E. [1 ,5 ]
Wright, J. [1 ,6 ]
机构
[1] EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Barcelona Supercomp Ctr, Barcelona, Spain
[3] ICREA, Barcelona, Spain
[4] CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England
[5] TEC Partner, Assoc EUROFUS Belgian State, LPP ERM KMS, Brussels, Belgium
[6] MIT, Plasma Sci & Fus, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS | 2020年 / 2254卷
关键词
D O I
10.1063/5.0014358
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A tritium (T) campaign is planned in preparation for the deuterium-tritium (D-T) campaign at the Joint European Torus (JET). These experiments will be the first experiments involving T with the ITER-like plasma-wall facing components materials. They will give a unique opportunity to test one of the most promising ion cyclotron resonance frequency (ICRF) heating schemes for ITER plasmas: the 2nd tritium (T) harmonic resonance (omega = 2 omega(T)). This paper provides two key contributions related to modelling of the performance of this scheme at JET. First, we assess the heating performance of the 2nd T harmonic resonance and, second, we model different ICRF schemes for the T campaign in support for the D-T campaign, i.e., identify differences and similarities from the heating point of view between T and D-T plasmas in order to predict the performance of omega = 2 omega(T) in the D-T scenario. In our modelling we use a selected hybrid record discharge as reference, i.e., using its experimental profiles. We consider two ICRF schemes (6 MW), i.e. omega = omega(3He) = 2 omega T (no He-3), with a central resonance and three NBI power outputs (15, 25 and 35 MW) in two plasma compositions (100% T and 50%:50% D-T). Note that isotope effects are not taken into account in these simulations. For this study, the ICRF and NBI heating are modelled with the ICRF code PION and the beam code PENCIL which take into account the ICRF +NBI synergy. The analysis of the T velocity distribution function shows that a stronger tail is formed in those plasmas with lower tritium density. This fact has an important impact on the slowing-down process of fast tritons with the background species. The T plasma shows a higher and more peaked ion-ion collisional power density at the plasma centre as compared to D-T plasma. In the T plasma, ICRF heating drives fast tritons at the plasma centre with an average energy substantially lower than in the other case. On the other hand, the use of He-3 as a minority makes the fast ion T energy considerably lower due to strong He-3 absorption. Fast ion average energies reached at the plasma centre are similar in all species mixture cases. As a result, there is a strong heating similarity between T and D-T. However, it is crucial to study the generation of a strong T tail as a result of particle-wave interaction which is not possible under this scheme and needs to be studied in plasmas without 3He in preparation of JET D-T campaign and ITER. Therefore, both schemes (omega = omega 3He = 2 omega(T) and omega = 2 omega(T)) need to be tested.
引用
收藏
页数:4
相关论文
共 14 条
[1]   Theoretical description of heavy impurity transport and its application to the modelling of tungsten in JET and ASDEX upgrade [J].
Casson, F. J. ;
Angioni, C. ;
Belli, E. A. ;
Bilato, R. ;
Mantica, P. ;
Odstrcil, T. ;
Puetterich, T. ;
Valisa, M. ;
Garzotti, L. ;
Giroud, C. ;
Hobirk, J. ;
Maggi, C. F. ;
Mlynar, J. ;
Reinke, M. L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
[2]   NON-INDUCTIVELY DRIVEN CURRENTS IN JET [J].
CHALLIS, CD ;
CORDEY, JG ;
HAMNEN, H ;
STUBBERFIELD, PM ;
CHRISTIANSEN, JP ;
LAZZARO, E ;
MUIR, DG ;
STORK, D ;
THOMPSON, E .
NUCLEAR FUSION, 1989, 29 (04) :563-570
[3]   COMPARISON OF TIME-DEPENDENT SIMULATIONS WITH EXPERIMENTS IN ION-CYCLOTRON HEATED PLASMAS [J].
ERIKSSON, LG ;
HELLSTEN, T ;
WILLEN, U .
NUCLEAR FUSION, 1993, 33 (07) :1037-1048
[4]   Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating [J].
Gallart, D. ;
Mantsinen, M. J. ;
Challis, C. ;
Frigione, D. ;
Graves, J. ;
Belonohy, E. ;
Casson, F. ;
Czarnecka, A. ;
Eriksson, J. ;
Garcia, J. ;
Goniche, M. ;
Hellesen, C. ;
Hobirk, J. ;
Jaquet, P. ;
Joffrin, E. ;
Krawczyk, N. ;
King, D. ;
Lennholm, M. ;
Lerche, E. ;
Pawelec, E. ;
Saez, X. ;
Sertoli, M. ;
Sips, G. ;
Solano, E. ;
Tsalas, M. ;
Vallejos, P. ;
Valisa, M. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. .
NUCLEAR FUSION, 2018, 58 (10)
[5]  
Gallart Dani, 2017, EPJ Web of Conferences, V157, DOI 10.1051/epjconf/201715703015
[6]   First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER [J].
Garcia, J. ;
Dumont, R. J. ;
Joly, J. ;
Morales, J. ;
Garzotti, L. ;
Bache, T. W. ;
Baranov, Y. ;
Casson, F. J. ;
Challis, C. ;
Kirov, K. ;
Mailloux, J. ;
Saarelma, S. ;
Nocente, M. ;
Banon-Navarro, A. ;
Goerler, T. ;
Citrin, J. ;
Ho, A. ;
Gallart, D. ;
Mantsinen, M. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afanasev, V ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Alarcon, T. ;
Albanese, R. ;
Alegre, D. ;
Aleiferis, S. ;
Alessi, E. ;
Aleynikov, P. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V ;
Sunden, E. Andersson ;
Andrews, R. ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. .
NUCLEAR FUSION, 2019, 59 (08)
[7]   Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios [J].
Goniche, M. ;
Dumont, R. J. ;
Bobkov, V. ;
Buratti, P. ;
Brezinsek, S. ;
Challis, C. ;
Colas, L. ;
Czarnecka, A. ;
Drewelow, P. ;
Fedorczak, N. ;
Garcia, J. ;
Giroud, C. ;
Graham, M. ;
Graves, J. P. ;
Hobirk, J. ;
Jacquet, P. ;
Lerche, E. ;
Mantica, P. ;
Monakhov, I. ;
Monier-Garbet, P. ;
Nave, M. F. F. ;
Noble, C. ;
Nunes, I. ;
Puetterich, T. ;
Rimini, F. ;
Sertoli, M. ;
Valisa, M. ;
Van Eester, D. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (05)
[8]  
Joffrin E, 2018, IAEA 27 FUS EN C
[9]   Fast ion synergistic effects in JET high performance pulses [J].
Kirov, K. K. ;
Baranov, Yu ;
Carvalho, I. S. ;
Challis, C. D. ;
Eriksson, J. ;
Frigione, D. ;
Garzotti, L. ;
Graves, J. ;
Jacquet, P. ;
Keeling, D. L. ;
Lerche, E. ;
Lomas, P. J. ;
Lowry, C. ;
Mantsinen, M. ;
Rimini, F. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. .
NUCLEAR FUSION, 2019, 59 (05)
[10]  
Lerche E., 2019, AIP UNPUB