Inertial torque on a small spheroid in a stationary uniform flow

被引:19
作者
Jiang, F. [1 ]
Zhao, L. [2 ]
Andersson, H., I [3 ]
Gustavsson, K. [4 ]
Pumir, A. [5 ]
Mehlig, B. [4 ]
机构
[1] SINTEF Ocean, NO-7052 Trondheim, Norway
[2] Tsinghua Univ, Dept Engn Mech, AML, Beijing 100084, Peoples R China
[3] NTNU, Dept Energy & Proc Engn, NO-7491 Trondheim, Norway
[4] Gothenburg Univ, Dept Phys, SE-41296 Gothenburg, Sweden
[5] Univ Lyon, Univ Claude Bernard, CNRS, Lab Phys,ENS Lyon, F-69342 Lyon, France
基金
中国国家自然科学基金;
关键词
Crystal orientation - Reynolds number - Aspect ratio - Navier Stokes equations;
D O I
10.1103/PhysRevFluids.6.024302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
How anisotropic particles rotate and orient in a flow depends on the hydrodynamic torque they experience. Here we compute the torque acting on a small spheroid in a uniform flow by numerically solving the Navier-Stokes equations. Particle shape is varied from oblate (aspect ratio lambda = 1/6) to prolate (lambda = 6), and we consider low and moderate particle Reynolds numbers (Re <= 50). We demonstrate that the angular dependence of the torque, predicted theoretically for small particle Reynolds numbers, remains qualitatively correct for Reynolds numbers up to Re similar to 10. The amplitude of the torque, however, is smaller than the theoretical prediction, the more so as Re increases. For Re larger than 10, the flow past oblate spheroids acquires a more complicated structure, resulting in systematic deviations from the theoretical predictions. Overall, our numerical results provide a justification of recent theories for the orientation statistics of ice crystals settling in a turbulent flow.
引用
收藏
页数:12
相关论文
共 42 条
[21]   The transitional wake behind an inclined prolate spheroid [J].
Jiang, Fengjian ;
Gallardo, Jose P. ;
Andersson, Helge I. ;
Zhang, Zhiguo .
PHYSICS OF FLUIDS, 2015, 27 (09)
[22]   The laminar wake behind a 6:1 prolate spheroid at 45° incidence angle [J].
Jiang, Fengjian ;
Gallardo, Jose P. ;
Andersson, Helge I. .
PHYSICS OF FLUIDS, 2014, 26 (11)
[23]   INERTIA EFFECTS ON THE MOTION OF LONG SLENDER BODIES [J].
KHAYAT, RE ;
COX, RG .
JOURNAL OF FLUID MECHANICS, 1989, 209 :435-462
[24]  
Kim S., 1991, Microhydrodynamics: Principles and Selected Applications
[25]  
KLETT JD, 1995, J ATMOS SCI, V52, P2276, DOI 10.1175/1520-0469(1995)052<2276:OMFPIT>2.0.CO
[26]  
2
[27]  
Kramel S., 2017, Non-spherical particle dynamics in turbulence
[28]   Inertial effects on fibers settling in a vortical flow [J].
Lopez, Diego ;
Guazzelli, Elisabeth .
PHYSICAL REVIEW FLUIDS, 2017, 2 (02)
[29]  
Manhart M., 2001, MGLET PARALLEL CODE, P449