A comparison of pixel, edge and wavelet features for face detection using a semi-naive Bayesian classifier

被引:0
作者
Beveridge, J. Ross [1 ]
Saraf, Jilmil [1 ]
Randall, Ben [1 ]
机构
[1] Colorado State Univ, Dept Comp Sci, Ft Collins, CO 80523 USA
来源
18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS | 2006年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Henry Schneiderman at Carnegie Mellon University developed a face detection algorithm based upon a semi-naive Bayesian classifier and 513 linear phase wavelets. This paper explores the relative value of these wavelet features compared to simpler pixel and edge features.. Experiments suggest edge features are superior for highly controlled lighting, while pixel features are better and more stable for uncontrolled lighting. Tests use the Notre Dame face data collected in Fall 2003 and Spring 2004 and use over 400, 000 face and non-face test image chips.
引用
收藏
页码:1175 / +
页数:3
相关论文
共 10 条
[1]  
[Anonymous], 2001, P 2 INT WORKSH STAT
[2]  
Ballard D.H., 1982, Computer Vision
[3]  
FLEURET F, IN PRESS INT J COMPU
[4]  
Phillips PJ, 2005, PROC CVPR IEEE, P947
[5]   The FERET evaluation methodology for face-recognition algorithms [J].
Phillips, PJ ;
Moon, H ;
Rizvi, SA ;
Rauss, PJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (10) :1090-1104
[6]  
RANDALL B, 2005, THESIS COLORADO STAT
[7]  
SCHNEIDERMAN H, 2003, COMPUTER ANAL IMAGES
[8]   Robust real-time face detection [J].
Viola, P ;
Jones, MJ .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 57 (02) :137-154
[9]   Detecting faces in images: A survey [J].
Yang, MH ;
Kriegman, DJ ;
Ahuja, N .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (01) :34-58
[10]  
Yang MH, 2000, ADV NEUR IN, V12, P862