SURVIVAL AND COEXISTENCE FOR A MULTITYPE OF CONTACT PROCESS

被引:10
|
作者
Cox, J. Theodore [1 ]
Schinazi, Rinaldo B. [2 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Univ Colorado, Dept Math, Colorado Springs, CO 80933 USA
来源
ANNALS OF PROBABILITY | 2009年 / 37卷 / 03期
基金
美国国家科学基金会;
关键词
Contact process; trees; multitype; survival; coexistence complete convergence; MODEL;
D O I
10.1214/08-AOP422
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the ergodic theory of a multitype contact process with equal death rates and unequal birth rates on the d-dimensional integer lattice and OF regular trees. We prove that for birth rates in a certain interval there is coexistence on the tree, which by a result of Neuhauser is not possible on the lattice. We also prove a complete convergence result when the larger birth rate falls outside of this interval.
引用
收藏
页码:853 / 876
页数:24
相关论文
共 50 条