Ship Detection in Optical Remote Sensing Images Using YOLOv4 and Tiny YOLOv4

被引:11
|
作者
Yildirim, Esra [1 ]
Kavzoglu, Taskin [1 ]
机构
[1] Gebze Tech Univ, Dept Geomat Engn, TR-41400 Kocaeli, Turkey
来源
6TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS | 2022年 / 393卷
关键词
Optical images; Deep learning; Ship detection; YOLOv4; Tiny YOLOv4; OBJECT DETECTION;
D O I
10.1007/978-3-030-94191-8_74
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the advances in remote sensing domain, images with higher spatial and spectral resolution are obtained from increasing number of sensors, and they have been employed in more research fields, including object detection and tracking. In particular, the detection of marine vehicles has a significant role in civil and military applications. However, due to the varying type, size, posture, and complex background of the ships to be detected, ship target detection is still considered as a challenging task. Deep learning techniques with their wide-spread use in computer vision applications have been successfully applied to object detection problems that is important to monitor marine traffic and ensure maritime safety. In this study, a freely available aerial image dataset is utilized to train and test the two popular single-stage object detection models, namely YOLOv4 and Tiny YOLOv4, based on the "You Only Look Once" approach. Produced results were analyzed using conventional accuracy metrics, and average prediction times were also compared. The trained models were evaluated on different ship images and detections were performed. As a result of the study, mean average precision (mAP) values of 80.82% and 62.30% were obtained using YOLOv4 and Tiny YOLOv4 architectures, respectively. This indicates major performance difference between YOLOv4 and Tiny YOLOv4 models for ship detection studies.
引用
收藏
页码:913 / 924
页数:12
相关论文
共 50 条
  • [21] Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
    Abdurahman, Fetulhak
    Fante, Kinde Anlay
    Aliy, Mohammed
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [22] Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
    Fetulhak Abdurahman
    Kinde Anlay Fante
    Mohammed Aliy
    BMC Bioinformatics, 22
  • [23] Underwater object detection based on enhanced YOLOv4 architecture
    Liu C.-H.
    Lin C.H.
    Multimedia Tools and Applications, 2024, 83 (18) : 53759 - 53783
  • [24] Detection of cigarette appearance defects based on improved YOLOv4
    Yuan, Guowu
    Liu, Jiancheng
    Liu, Hongyu
    Ma, Yihai
    Wu, Hao
    Zhou, Hao
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1344 - 1364
  • [25] A Lightweight and Accurate UAV Detection Method Based on YOLOv4
    Cai, Hao
    Xie, Yuanquan
    Xu, Jianlong
    Xiong, Zhi
    SENSORS, 2022, 22 (18)
  • [26] Sorting and Detection of Impurity Glass Based on YOLOv4
    Yang Bo
    Xu Zhenming
    Liu Jianxin
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [27] Weld Image Detection and Recognition Based on Improved YOLOv4
    Cheng Song
    Dai Jintao
    Yang Honggang
    Chen Yunxia
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [28] Object Detection in Indian Food Platters using Transfer Learning with YOLOv4
    Pandey, Deepanshu
    Parmar, Purva
    Toshniwal, Gauri
    Goel, Mansi
    Agrawal, Vishesh
    Dhiman, Shivangi
    Gupta, Lavanya
    Bagler, Ganesh
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2022), 2022, : 101 - 106
  • [29] YOLOv4 Vs YOLOv5: Object Detection on Surveillance Videos
    Mohod, Nikita
    Agrawal, Prateek
    Madaan, Vishu
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2022, PT II, 2023, 1798 : 654 - 665
  • [30] Detection of Welding Defects Tracked by YOLOv4 Algorithm
    Chen, Yunxia
    Wu, Yan
    APPLIED SCIENCES-BASEL, 2025, 15 (04):