Energy of graphs;
inverse sum indeg energy;
extremal bounds;
equienergetic graphs;
SPECTRAL-RADIUS;
MATRIX;
D O I:
10.1109/ACCESS.2019.2929528
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Suppose G is an n-vertex simple graph with vertex set {v(1), ... v(n)} and d(i), i = 1; ... ; n, is the degree of vertex v(i) in G. The ISI matrix S (G) = [s(ij)](nxn) of G is defined by s(ij) = d(i)d(j)/d(i)+d(j) if the vertices v(i) and v(j) are adjacent and s(ij) = 0 otherwise. The S-eigenvalues of G are the eigenvalues of its ISI matrix S (G). Recently, the notion of inverse sum indeg (henceforth, ISI) energy of graphs is introduced and is defined by Sigma(n)(i=1)vertical bar tau(i)vertical bar, where tau(i) are the S-eigenvalues. We give ISI energy formula of some graph classes. We also obtain some bounds for ISI energy of graphs. In the end, we give some noncospectral equienergetic graphs with respect to inverse sum indeg energy.
机构:
Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
Hechi Univ, Dept Math, Yizhou 546300, Peoples R ChinaZhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
Zhan, Fuqin
Qiao, Youfu
论文数: 0引用数: 0
h-index: 0
机构:
Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
Hechi Univ, Dept Math, Yizhou 546300, Peoples R ChinaZhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
Qiao, Youfu
Cai, Junliang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Math, Beijing 100875, Peoples R ChinaZhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Peoples R China
机构:
Hechi Univ, Dept Math, Yizhou 546300, Peoples R China
Beijing Normal Univ, Coll Math, Beijing 100875, Peoples R ChinaHechi Univ, Dept Math, Yizhou 546300, Peoples R China
Zhan, Fuqin
Qiao, Youfu
论文数: 0引用数: 0
h-index: 0
机构:
Hechi Univ, Dept Math, Yizhou 546300, Peoples R ChinaHechi Univ, Dept Math, Yizhou 546300, Peoples R China