Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion

被引:73
作者
Bollt, Erik M. [1 ]
Chartrand, Rick [2 ]
Esedoglu, Selim [3 ]
Schultz, Pete [2 ]
Vixie, Kevin R. [2 ]
机构
[1] Clarkson Univ, Potsdam, NY 13699 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Graduated adaptive image denoising; Total variation; Isotropic diffusion; RESTORATION;
D O I
10.1007/s10444-008-9082-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce variants of the variational image denoising method proposed by Blomgren et al. (In: Numerical Analysis 1999 (Dundee), pp. 43-67. Chapman & Hall, Boca Raton, FL, 2000), which interpolates between total-variation denoising and isotropic diffusion denoising. We study how parameter choices affect results and allow tuning between TV denoising and isotropic diffusion for respecting texture on one spatial scale while denoising features assumed to be noise on finer spatial scales. Furthermore, we prove existence and (where appropriate) uniqueness of minimizers. We consider both L (2) and L (1) data fidelity terms.
引用
收藏
页码:61 / 85
页数:25
相关论文
共 13 条
[1]  
[Anonymous], 1999, REAL ANAL MODERN TEC
[2]  
[Anonymous], 1999, CLASSICS APPL MATH
[3]  
[Anonymous], FUNCTIONS BOUNDED VA
[4]  
Blomgren P, 2000, CH CRC RES NOTES, V420, P43
[5]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[6]   Aspects of total variation regularized L1 function approximation [J].
Chan, TF ;
Esedoglu, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1817-1837
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]  
DACAROGNA B, 2004, INTRO CALCULUS VARIA
[9]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[10]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions