Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams

被引:119
作者
Dodds, WK
Martí, E
Tank, JL
Pontius, J
Hamilton, SK
Grimm, NB
Bowden, WB
McDowell, WH
Peterson, BJ
Valett, HM
Webster, JR
Gregory, S
机构
[1] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[2] Ctr Estudis Avancats Blanes, Blanes 17300, Girona, Spain
[3] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA
[4] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
[5] Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA
[6] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[7] Univ Vermont, Sch Nat Resources, Burlington, VT 05405 USA
[8] Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA
[9] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[10] Virginia Polytech Inst & State Univ, Dept Biol, Blacksburg, VA 24061 USA
[11] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA
关键词
carbon; carbon : nitrogen ratio; nitrogen; stoichiometry; streams;
D O I
10.1007/s00442-004-1599-y
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Stoichiometric analyses can be used to investigate the linkages between N and C cycles and how these linkages influence biogeochemistry at many scales, from components of individual ecosystems up to the biosphere. N-specific NH4+ uptake rates were measured in eight streams using short-term N-15 tracer additions, and C to N ratios (C:N) were determined from living and non-living organic matter collected from ten streams. These data were also compared to previously published data compiled from studies of lakes, ponds, wetlands, forests, and tundra. There was a significant negative relationship between C:N and N-specific uptake rate; C:N could account for 41% of the variance in N-specific uptake rate across all streams, and the relationship held in five of eight streams. Most of the variation in N-specific uptake rate was contributed by detrital and primary producer compartments with large values of C:N and small values for N-specific uptake rate. In streams, particulate materials are not as likely to move downstream as dissolved N, so if N is cycling in a particulate compartment, N retention is likely to be greater. Together, these data suggest that N retention may depend in part on C:N of living and non-living organic matter in streams. Factors that alter C:N of stream ecosystem compartments, such as removal of riparian vegetation or N fertilization, may influence the amount of retention attributed to these ecosystem compartments by causing shifts in stoichiometry. Our analysis suggests that C:N of ecosystem compartments can be used to link N-cycling models across streams.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 67 条
[11]   Nitrogen transport from tallgrass prairie watersheds [J].
Dodds, WK ;
Blair, JM ;
Henebry, GM ;
Koelliker, JK ;
Ramundo, R ;
Tate, CM .
JOURNAL OF ENVIRONMENTAL QUALITY, 1996, 25 (05) :973-981
[12]   Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams [J].
Dodds, WK ;
Smith, VH ;
Lohman, K .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2002, 59 (05) :865-874
[13]   Quantification of the nitrogen cycle in a prairie stream [J].
Dodds, WK ;
Evans-White, MA ;
Gerlanc, NM ;
Gray, L ;
Gudder, DA ;
Kemp, MJ ;
López, AL ;
Stagliano, D ;
Strauss, EA ;
Tank, JL ;
Whiles, MR ;
Wollheim, WM .
ECOSYSTEMS, 2000, 3 (06) :574-589
[14]   SEASONAL UPTAKE AND REGENERATION OF INORGANIC NITROGEN AND PHOSPHORUS IN A LARGE OLIGOTROPHIC LAKE - SIZE-FRACTIONATION AND ANTIBIOTIC-TREATMENT [J].
DODDS, WK ;
PRISCU, JC ;
ELLIS, BK .
JOURNAL OF PLANKTON RESEARCH, 1991, 13 (06) :1339-1358
[15]   ON MULTIPLE-NUTRIENT-LIMITED GROWTH OF MICROORGANISMS, WITH SPECIAL REFERENCE TO DUAL LIMITATION BY CARBON AND NITROGEN SUBSTRATES [J].
EGLI, T .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1991, 60 (3-4) :225-234
[16]   The stoichiometry of consumer-driven nutrient recycling: Theory, observations, and consequences [J].
Elser, JJ ;
Urabe, J .
ECOLOGY, 1999, 80 (03) :735-751
[17]   Biological stoichiometry from genes to ecosystems [J].
Elser, JJ ;
Sterner, RW ;
Gorokhova, E ;
Fagan, WF ;
Markow, TA ;
Cotner, JB ;
Harrison, JF ;
Hobbie, SE ;
Odell, GM ;
Weider, LJ .
ECOLOGY LETTERS, 2000, 3 (06) :540-550
[18]   PHOSPHORUS AND NITROGEN LIMITATION OF PHYTOPLANKTON GROWTH IN THE FRESH-WATERS OF NORTH-AMERICA - A REVIEW AND CRITIQUE OF EXPERIMENTAL ENRICHMENTS [J].
ELSER, JJ ;
MARZOLF, ER ;
GOLDMAN, CR .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1990, 47 (07) :1468-1477
[19]  
Fenchel T, 1998, BACTERIAL BIOGEOCHEMISTRY: THE ECOPHYSIOLOGY OF MINERAL CYCLING, 2ND EDITION, P4
[20]  
Fenn ME, 1998, ECOL APPL, V8, P706, DOI 10.1890/1051-0761(1998)008[0706:NEINAE]2.0.CO