All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li-S Batteries

被引:406
作者
Dong, Yanfeng [1 ]
Zheng, Shuanghao [1 ,3 ]
Qin, Jieqiong [1 ,3 ]
Zhao, Xuejun [1 ]
Shi, Haodong [1 ,3 ]
Wang, Xiaohui [2 ]
Chen, Jian [1 ]
Wu, Zhong-Shuai [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
[3] Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MXene; nanosheets; integrated electrode; flexible; lithium-sulfur batteries; LITHIUM-SULFUR BATTERIES; NITROGEN-DOPED GRAPHENE; LONG-LIFE; POLYSULFIDE MEDIATOR; PERFORMANCE; CATHODES; PROGRESS; OXIDE; SEPARATOR; ULTRAFAST;
D O I
10.1021/acsnano.7b07672
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-energy-density lithium-sulfur (Li-S) batteries hold promise for next-generation portable electronic devices, but are facing great challenges in rational construction of high-performance flexible electrodes and innovative cell configurations for actual applications. Here we demonstrated an all-MXene-based flexible and integrated sulfur cathode, enabled by three-dimensional alkalized Ti3C2 MXene nanoribbon (a-Ti3C2 MNR) frameworks as a S/polysulfides host (a-Ti3C2-S) and two-dimensional delaminated Ti3C2 MXene (d-Ti3C2) nano-sheets as interlayer on a polypropylene (PP) separator, for high-energy and long-cycle Li-S batteries. Notably, an a-Ti3C2 MNR framework with open interconnected macropores and an exposed surface area guarantees high S loading and fast ionic diffusion for prompt lithiation/delithiation kinetics, and the 2D d-Ti3C2 MXene interlayer remarkably prevents the shuttle effect of lithium polysulfides via both chemical absorption and physical blocking. As a result, the integrated a-Ti3C2-S/d-Ti3C2/PP electrode was directly used for Li-S batteries, without the requirement of a metal current collector, and exhibited a high reversible capacity of 1062 mAh g(-1) at 0.2 C and enhanced capacity of 632 mAh g(-1) after 50 cycles at 0.5 C, outperforming the a-Ti3C2-S/PP electrode (547 mAh g(-1)) and conventional a-Ti3C2-S on an Al current collector (a-Ti3C2-S/Al) (597 mAh g(-1)). Furthermore, the all-MXene-based integrated cathode displayed outstanding rate capacity of 288 mAh g(-1) at 10 C and long-life cyclability. Therefore, this proposed strategy of constructing an all-MXene-based cathode can be readily extended to assemble a large number of MXene-derived materials, from a group of 60+ MAX phases, for applications such as various batteries and supercapacitors.
引用
收藏
页码:2381 / 2388
页数:8
相关论文
共 56 条
[1]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[2]   Confined Sulfur in 3D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium-Sulfur Battery [J].
Bao, Weizhai ;
Xie, Xiuqiang ;
Xu, Jing ;
Guo, Xin ;
Song, Jianjun ;
Wu, Wenjian ;
Su, Dawei ;
Wang, Guoxiu .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (51) :12613-12619
[3]   Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium-Sulfur Batteries [J].
Cai, Wenlong ;
Li, Gaoran ;
Zhang, Kailong ;
Xiao, Guannan ;
Wang, Can ;
Ye, Kefen ;
Chen, Zhongwei ;
Zhu, Yongchun ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (02)
[4]   A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High- Performance Lithium-Sulfur Batteries with Unconventional Configurations [J].
Cao, Jun ;
Chen, Chen ;
Zhao, Qing ;
Zhang, Ning ;
Lu, Qiongqiong ;
Wang, Xinyu ;
Niu, Zhiqiang ;
Chen, Jun .
ADVANCED MATERIALS, 2016, 28 (43) :9629-+
[5]   Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries [J].
Deng, Ding-Rong ;
Xue, Fei ;
Jia, Yue-Ju ;
Ye, Jian-Chuan ;
Bai, Cheng-Dong ;
Zheng, Ming-Sen ;
Dong, Quan-Feng .
ACS NANO, 2017, 11 (06) :6031-6039
[6]   A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks [J].
Ding, Li ;
Wei, Yanying ;
Wang, Yanjie ;
Chen, Hongbin ;
Caro, Juergen ;
Wang, Haihui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (07) :1825-1829
[7]   Graphene: a promising 2D material for electrochemical energy storage [J].
Dong, Yanfeng ;
Wu, Zhong-Shuai ;
Ren, Wencai ;
Cheng, Hui-Ming ;
Bao, Xinhe .
SCIENCE BULLETIN, 2017, 62 (10) :724-740
[8]   Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities [J].
Dong, Yanfeng ;
Wu, Zhong-Shuai ;
Zheng, Shuanghao ;
Wang, Xiaohui ;
Qin, Jieqiong ;
Wang, Sen ;
Shi, Xiaoyu ;
Bao, Xinhe .
ACS NANO, 2017, 11 (05) :4792-4800
[9]   Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium-Sulfur Batteries [J].
Fan, Ye ;
Yang, Zhi ;
Hua, Wuxing ;
Liu, Dan ;
Tao, Tao ;
Rahman, Md Mokhlesur ;
Lei, Weiwei ;
Huang, Shaoming ;
Chen, Ying .
ADVANCED ENERGY MATERIALS, 2017, 7 (13)
[10]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)