A Summation Formula for Macdonald Polynomials

被引:2
作者
de Gier, Jan [1 ]
Wheeler, Michael [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Macdonald polynomials; AFFINE HECKE ALGEBRAS; COMBINATORIAL FORMULA; REPRESENTATIONS; OPERATORS;
D O I
10.1007/s11005-016-0820-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases and , we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
引用
收藏
页码:381 / 394
页数:14
相关论文
共 13 条
[1]   Matrix product formula for Macdonald polynomials [J].
Cantini, Luigi ;
de Gier, Jan ;
Wheeler, Michael .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (38)
[2]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[3]  
CHEREDNIK IV, 1995, IMRN, V10, P483
[4]   EULER-POINCARE CHARACTERISTIC AND POLYNOMIAL REPRESENTATIONS OF IWAHORI-HECKE ALGEBRAS [J].
DUCHAMP, G ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
SCHARF, T ;
THIBON, JY .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (02) :179-201
[5]   A combinatorial formula for Macdonald polynomials [J].
Haglund, J ;
Haiman, M ;
Loehr, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :735-761
[6]   A COMBINATORIAL FORMULA FOR NONSYMMETRIC MACDONALD POLYNOMIALS [J].
Haglund, J. ;
Haiman, M. ;
Loehr, N. .
AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (02) :359-383
[7]   Hecke algebras, difference operators, and quasi-symmetric functions [J].
Hivert, F .
ADVANCES IN MATHEMATICS, 2000, 155 (02) :181-238
[8]  
Kirillov A. N., 1999, CRM P LECT NOTES, V22
[9]   Affine Hecke algebras and raising operators for Macdonald polynomials [J].
Kirillov, AN ;
Noumi, M .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (01) :1-39
[10]  
MACDONALD I, 1988, PUBLICATIONS I RECHE, V20, P131