A Summation Formula for Macdonald Polynomials

被引:2
|
作者
de Gier, Jan [1 ]
Wheeler, Michael [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Macdonald polynomials; AFFINE HECKE ALGEBRAS; COMBINATORIAL FORMULA; REPRESENTATIONS; OPERATORS;
D O I
10.1007/s11005-016-0820-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases and , we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
引用
收藏
页码:381 / 394
页数:14
相关论文
共 50 条
  • [1] A Summation Formula for Macdonald Polynomials
    Jan de Gier
    Michael Wheeler
    Letters in Mathematical Physics, 2016, 106 : 381 - 394
  • [2] Matrix product formula for Macdonald polynomials
    Cantini, Luigi
    de Gier, Jan
    Wheeler, Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (38)
  • [3] A combinatorial formula for Macdonald polynomials
    Ram, Arun
    Yip, Martha
    ADVANCES IN MATHEMATICS, 2011, 226 (01) : 309 - 331
  • [4] A 1Ψ1 summation theorem for Macdonald polynomials
    Kaneko, J
    RAMANUJAN JOURNAL, 1998, 2 (03): : 379 - 386
  • [5] A 1Ψ1 Summation Theorem for Macdonald Polynomials
    Jyoichi Kaneko
    The Ramanujan Journal, 1998, 2 : 379 - 386
  • [6] A Nekrasov–Okounkov formula for Macdonald polynomials
    Eric M. Rains
    S. Ole Warnaar
    Journal of Algebraic Combinatorics, 2018, 48 : 1 - 30
  • [7] Inversion of the Pieri formula for Macdonald polynomials
    Lassalle, Michel
    Schlosser, Michael
    ADVANCES IN MATHEMATICS, 2006, 202 (02) : 289 - 325
  • [8] A raising operator formula for Macdonald polynomials
    Blasiak, J.
    Haiman, M.
    Morse, J.
    Pun, A.
    Seelinger, G. H.
    FORUM OF MATHEMATICS SIGMA, 2025, 13
  • [9] A formula for N-Row Macdonald polynomials
    Williams, EA
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2005, 21 (02) : 111 - 130
  • [10] A Formula for N-Row Macdonald Polynomials
    Ellison-Anne Williams
    Journal of Algebraic Combinatorics, 2005, 21 : 111 - 130