Charge and Bonding in CuGeO3 Nanorods

被引:3
|
作者
O'Neal, Kenneth R. [1 ]
al-Wahish, Aural [1 ]
Li, Zhao-Qian [2 ]
Dhalenne, Guy [3 ]
Revcolevschi, Alexandre [3 ]
Chen, Xue-Tai [4 ]
Musfeldt, Janice L. [1 ,5 ]
机构
[1] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[2] Chinese Acad Sci, Inst Appl Technol, Hefei Inst Phys Sci, Hefei 230031, Anhui, Peoples R China
[3] Univ Paris Saclay, ICMMO SP2M, UMR CNRS 8182, F-91405 Orsay, France
[4] Nanjing Univ, State Key Lab Coordinat Chem, Nanjing Natl Lab Microstruct, Sch Chem & Chem Engn, Nanjing 210023, Jiangsu, Peoples R China
[5] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
关键词
Spin-Peierls transition; magnetoelastic coupling; size effects; phonon confinement; nanorods; vibrational spectroscopy; SPIN-PEIERLS TRANSITION; FERROELECTRIC PHASE-TRANSITION; HEMATITE NANOPARTICLES; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; LIGHT-SCATTERING; DIAGRAM; RAMAN; TEMPERATURE; PURE;
D O I
10.1021/acs.nanolett.8b00407
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We combine infrared and Raman spectroscopies to investigate finite length scale effects in CuGeO3 nanorods. The infrared-active phonons display remarkably strong size dependence whereas the Raman-active features are, by comparison, nearly rigid. A splitting analysis of the Davydov pairs reveals complex changes in chemical bonding with rod length and temperature. Near the spin-Peierls transition, stronger intralayer bonding in the smallest rods indicates a more rigid lattice which helps to suppress the spin-Peierls transition. Taken together, these findings advance the understanding of size effects and collective phase transitions in low-dimensional oxides.
引用
收藏
页码:3428 / 3434
页数:7
相关论文
共 50 条
  • [1] Lithium storage capability of CuGeO3 nanorods
    Feng, JinKui
    Lai, Man On
    Lu, Li
    MATERIALS RESEARCH BULLETIN, 2012, 47 (07) : 1693 - 1696
  • [2] Vibronic coupling and band gap trends in CuGeO3 nanorods
    O'Neal, Kenneth R.
    al-Wahish, Amal
    Li, Zhaoqian
    Chen, Peng
    Kim, Jae Wook
    Cheong, Sang-Wook
    Dhalenne, Guy
    Revcolevschi, Alexandre
    Chen, Xue-Tai
    Musfeldt, Janice L.
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [3] The magnetostriction of CuGeO3
    Petrakovskii, G
    Sablina, K
    Vorotinov, A
    Krynetskii, I
    Bogdanov, K
    Szymczak, H
    Gladczuk, L
    SOLID STATE COMMUNICATIONS, 1997, 101 (07) : 545 - 547
  • [4] Single-crystalline CuGeO3 nanorods: Synthesis, characterization and properties
    Wang, Fangfang
    Xing, Yan
    Su, Zhongmin
    Song, Shuyan
    MATERIALS RESEARCH BULLETIN, 2013, 48 (07) : 2654 - 2660
  • [5] Magnetism of doped CuGeO3
    Shirane, G
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1999, 60 (8-9) : 1031 - 1037
  • [6] Models of excitations in CuGeO3
    Cowley, RA
    Lake, B
    Tennant, DA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (11) : L179 - L185
  • [7] Orbital ordering in CuGeO3
    Bayukov, OA
    Petrakovskii, GA
    Savitskii, AF
    PHYSICS OF THE SOLID STATE, 1998, 40 (09) : 1534 - 1539
  • [8] Optical absorption of CuGeO3
    Bassi, M
    Camagni, P
    Rolli, R
    Samoggia, G
    Parmigiani, F
    Dhalenne, G
    Revcolevschi, A
    PHYSICAL REVIEW B, 1996, 54 (16) : 11030 - 11033
  • [9] MAGNETIC EXCITATIONS IN CUGEO3
    NISHI, M
    FUJITA, O
    AKIMITSU, J
    KAKURAI, K
    FUJII, Y
    PHYSICA B, 1995, 213 : 275 - 277
  • [10] Doping effects in CuGeO3
    Weiden, M
    Richter, W
    Geibel, C
    Steglich, F
    Lemmens, P
    Eisener, B
    Brinkmann, M
    Guntherodt, G
    PHYSICA B, 1996, 225 (3-4): : 177 - 190