Bladder Boundary Estimation by Gravitational Search Algorithm Using Electrical Impedance Tomography

被引:12
作者
Sharma, Sunam Kumar [1 ]
Konki, Sravan Kumar [2 ]
Khambampati, Anil Kumar [3 ]
Kim, Kyung Youn [3 ]
机构
[1] Jeju Natl Univ, Fac Appl Energy Syst, Major Elect Engn, Jeju 63243, South Korea
[2] Korea Inst Sci & Technol, Robot & Media Inst, Imaging Media Res Ctr, Seoul 02792, South Korea
[3] Jeju Natl Univ, Dept Elect Engn, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
Bladder; Shape; Electrodes; Tomography; Voltage measurement; Conductivity; Estimation; electrical impedance tomography (EIT); gravitational search algorithm (GSA); noninvasive monitoring; size estimation; RECONSTRUCTION; EIT; CONDUCTIVITY; OPTIMIZATION;
D O I
10.1109/TIM.2020.3006326
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The noninvasive method for monitoring urine collection in the bladder is highly recommended for paraplegia patients. These patients are unable to discharge urine at the right time due to a weaker sensation for bladder volume. If the urine is not discharged in time, then the bladder size will increase and affect the neighboring organs and tissues. Electrical impedance tomography (EIT) is a noninvasive alternative method that can be used for bladder status monitoring. Size estimation of the bladder with EIT can clarify the bladder status. The bladder is a nonuniform structure with complex shape; therefore, higher order Fourier series is needed to represent the true shape. In estimating the higher order Fourier coefficients, the performance of a conventional modified Newton-Raphson (mNR) algorithm does not give the desired performance. In this article, the gravitational search algorithm (GSA) that is known for solving optimization problems in high-dimensional search space is proposed for the shape estimation of the bladder. GSA is a global optimization algorithm that has fast convergence and does not require the computation of Jacobian. Numerical experiments and phantom studies are performed to estimate the bladder size, and the results showed good performance.
引用
收藏
页码:9657 / 9667
页数:11
相关论文
共 43 条
[1]   Uses and abuses of EIDORS: an extensible software base for EIT [J].
Adler, A ;
Lionheart, WRB .
PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) :S25-S42
[2]   GREIT: a unified approach to 2D linear EIT reconstruction of lung images [J].
Adler, Andy ;
Arnold, John H. ;
Bayford, Richard ;
Borsic, Andrea ;
Brown, Brian ;
Dixon, Paul ;
Faes, Theo J. C. ;
Frerichs, Inez ;
Gagnon, Herve ;
Gaerber, Yvo ;
Grychtol, Bartlomiej ;
Hahn, Guenter ;
Lionheart, William R. B. ;
Malik, Anjum ;
Patterson, Robert P. ;
Stocks, Janet ;
Tizzard, Andrew ;
Weiler, Norbert ;
Wolf, Gerhard K. .
PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) :S35-S55
[3]   18F-FDG PET/CT delayed images after diuretic for restaging invasive bladder cancer [J].
Anjos, Dalton A. ;
Etchebehere, Elba C. S. C. ;
Ramos, Celso D. ;
Santos, Allan O. ;
Albertotti, Csar ;
Camargo, Edwaldo E. .
JOURNAL OF NUCLEAR MEDICINE, 2007, 48 (05) :764-770
[4]  
[Anonymous], 2013, Evolutionary Optimization Algorithms
[5]   Bioimpedance tomography (Electrical impedance tomography) [J].
Bayford, R. H. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2006, 8 :63-91
[6]   Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT [J].
Beretta, Elena ;
Micheletti, Stefano ;
Perotto, Simona ;
Santacesaria, Matteo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 353 :264-280
[7]  
Borsic A., 2004, Electrical Impedance Tomography: Methods, History andApplications, P3
[8]   Jacobian calculation for electrical impedance tomography based on the reciprocity principle [J].
Brandstätter, B .
IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (03) :1309-1312
[9]  
Brenner Susanne, 2007, MATH THEORY FINITE E, V15
[10]   Electrical impedance tomography [J].
Cheney, M ;
Isaacson, D ;
Newell, JC .
SIAM REVIEW, 1999, 41 (01) :85-101