Second Law of Thermodynamics with Discrete Quantum Feedback Control

被引:0
|
作者
Sagawa, Takahiro [1 ]
Ueda, Masahito [1 ]
机构
[1] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1138654, Japan
来源
QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC) | 2009年 / 1110卷
关键词
Quantum feedback control; Maxwell's demon; Nonequilibrium statistical mechanics;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new thermodynamic inequality which leads to the maximum work that can be extracted from multi-heat baths with the assistance of discrete quantum feedback control by "Maxwell's demon". The maximum work is determined by the free-energy difference and a generalized mutual information content between the thermodynamic system and the feedback controller.
引用
收藏
页码:21 / 24
页数:4
相关论文
共 50 条
  • [21] Quantum Dissipative Systems and Feedback Control Design by Interconnection
    James, Matthew R.
    Gough, John E.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (08) : 1806 - 1821
  • [22] Enhancing non-Markovianity by quantum feedback control
    Zong, Xiao-Lan
    Song, Wei
    Yang, Ming
    Cao, Zhuo-Liang
    QUANTUM INFORMATION PROCESSING, 2020, 19 (04)
  • [23] Verifying detailed fluctuation relations for discrete feedback-controlled quantum dynamics
    Camati, Patrice A.
    Serra, Roberto M.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [24] Experimental Challenge to the Second Law of Thermodynamics in High-Temperature, Gas-Surface Reactions
    Sheehan, D. P.
    Garamella, J. T.
    Mallin, D. J.
    Sheehan, W. F.
    SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES, 2011, 1411
  • [25] Quantum feedback control of linear stochastic systems with feedback-loop time delays
    Wang, Shi
    James, Matthew R.
    AUTOMATICA, 2015, 52 : 277 - 282
  • [26] Measurement-Based Quantum Thermal Machines with Feedback Control
    Bhandari, Bibek
    Czupryniak, Robert
    Erdman, Paolo Andrea
    Jordan, Andrew N.
    ENTROPY, 2023, 25 (02)
  • [27] QUANTUM MEASUREMENT-BASED FEEDBACK CONTROL: A NONSMOOTH TIME DELAY CONTROL APPROACH
    Ge, Shuzhi Sam
    Vu, Thanh Long
    Lee, Tong Heng
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (02) : 845 - 863
  • [28] Direct and Indirect Couplings in Coherent Feedback Control of Linear Quantum Systems
    Zhang, Guofeng
    James, Matthew R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (07) : 1535 - 1550
  • [29] Hamilton-Jacobi-Bellman equations for quantum optimal feedback control
    Gough, J
    Belavkin, VP
    Smolyanov, OG
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) : S237 - S244
  • [30] Is measurement-based feedback still better for quantum control systems?
    Qi, Bo
    Guo, Lei
    SYSTEMS & CONTROL LETTERS, 2010, 59 (06) : 333 - 339