Study on the hot tensile behavior, microstructure and fracture of Mg-13Gd-4Y-2Zn-0.5Zr alloy

被引:7
|
作者
Meng, Mu [1 ]
Che, Xin [1 ]
Zhang, Zhimin [1 ]
Dong, Beibei [1 ]
Shi, Zheng [1 ]
机构
[1] North Univ China, Coll Mat Sci & Engn, 3 Xueyuan Rd, Taiyuan 030051, Shanxi, Peoples R China
来源
MATERIALS RESEARCH EXPRESS | 2018年 / 5卷 / 05期
关键词
Mg-Gd-Y-Zn-Zr alloy; hot tensile behavior; microstructure; fracture characteristic; DYNAMIC RECRYSTALLIZATION BEHAVIOR; Y-ZR ALLOY; DEFORMATION BEHAVIORS; CONSTITUTIVE MODEL; MAGNESIUM ALLOYS; HEAT-TREATMENT; LPSO PHASE; PRECIPITATION; MECHANISM; EVOLUTION;
D O I
10.1088/2053-1591/aac35d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stress-strain curves of Mg-13Gd-4Y-2Zn-0.5Zr alloy are obtained by the hot tensile test at the temperature range from 400 to 520 degrees C and strain rate range from 0.001 to 0.5 s(-1). Then, the hot tensile behavior, microstructure and fracture characteristic are studied. The flow stress decreases with increasing temperature and decreasing strain rate, and the constitutive equation of peak stress can be expressed by an Arrhenius equation as follows: (epsilon) over dot= 1.367 x 10(16)[sinh(0.0104 sigma)](5.446) exp(-259.13/8.314T). The kinking and dynamic recrystallization (DRX) are the major softening mechanisms, and the greater kinking angle and the more DRXed grains can be observed by increasing temperature and decreasing strain rate. Therefore, the strain value at fracture (SVF) is the greatest at the temperature of 520 degrees C and strain rate of 0.001 s(-1). The microcrack in all specimens generates at the grain boundary and the interface between the block phase and Mg matrix. And the fracture characteristic gradually develops from brittle fracture to ductile fracture with increasing temperature and decreasing strain rate.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Deformation behavior and microstructure of Mg-13Gd-4Y-2Zn-0.5Zr alloy during the rotating forward extrusion process
    Duan, Yali
    Yu, Jianmin
    Zhang, Baohong
    Dong, Beibei
    Zhang, Zhimin
    Wu, Guoqin
    Wei, Zeng
    Li, Xubin
    Meng, Mu
    MATERIALS LETTERS, 2022, 319
  • [2] Mg-13Gd-4Y-2Zn-0.5Zr合金高温压缩断裂行为研究
    杜玥
    张治民
    薛勇
    尹燕
    兵器材料科学与工程, 2016, 39 (02) : 47 - 51
  • [3] Mg-13Gd-4Y-2Zn-0.5Zr镁合金组织与性能研究
    石泽民
    张治民
    于建民
    崔静钰
    热加工工艺, 2018, 47 (11) : 55 - 58
  • [4] Mg-13Gd-4Y-2Zn-0.5Zr镁合金减振性能的研究
    张军
    寇子明
    杨亚琴
    李小文
    热加工工艺, 2018, 47 (18) : 75 - 77+81
  • [5] Tensile creep behavior and microstructure evolution of Mg-11Gd-2Y-0.5Zr alloy
    Chen, Xiaoya
    Li, Quanan
    Zhu, Limin
    Zhang, Shuai
    Wang, Songbo
    Guan, Haikun
    VACUUM, 2019, 167 : 421 - 427
  • [6] Mg-13Gd-4Y-2Zn-0.5Zr合金的高温热压缩变形
    尹雪雁
    于建民
    张治民
    齐红娜
    郁湘
    陈艳
    特种铸造及有色合金, 2016, 36 (10) : 1117 - 1120
  • [7] Hot compression behavior and microstructure evolution of Mg-Gd-Y-Zn-Zr alloy
    Chen, Xiaoya
    Wang, Dongzhen
    Li, Quanan
    Xiong, Yi
    Tian, Kaikai
    Chen, Peijun
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 755 - 768
  • [8] Microstructure, texture evolution and mechanical properties of multi-directional forged Mg-13Gd-4Y-2Zn-0.5Zr alloy under decreasing temperature
    Dong, Beibei
    Zhang, Zhimin
    Yu, Jianmin
    Che, Xin
    Meng, Mu
    Zhang, Jinlu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 823
  • [9] Compressive stress and shear stress on the deformation mechanism of Mg-13Gd-4Y-2Zn-0.5Zr alloy at different deformation temperatures
    Guo, Rui
    Wang, Qiang
    Meng, Yingze
    Xu, Wenlong
    Li, Guojun
    Zhang, Zhimin
    Yu, Huisheng
    Yu, Jianmin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 18 : 1802 - 1821
  • [10] Deformation behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy on the basis of LPSO kinking, dynamic recrystallization and twinning during compression-torsion
    Xu, Wenlong
    Yu, Jianmin
    Jia, Leichen
    Wu, Guoqin
    Zhang, Zhimin
    MATERIALS CHARACTERIZATION, 2021, 178