EXISTENCE AND PROPERTIES OF GEOMETRIC QUOTIENTS

被引:43
作者
Rydh, David [1 ]
机构
[1] KTH, Dept Math, S-10044 Stockholm, Sweden
关键词
DESCENT; STACKS;
D O I
10.1090/S1056-3911-2013-00615-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study quotients of groupoids and coarse moduli spaces of stacks in a general setting. Geometric quotients are not always categorical, but we present a natural topological condition under which a geometric quotient is categorical. We also show the existence of geometric quotients of finite flat groupoids and give explicit local descriptions. Exploiting similar methods, we give an easy proof of the existence of quotients of flat groupoids with finite stabilizers. As the proofs do not use Noetherian methods and are valid for general algebraic spaces and algebraic stacks, we obtain a slightly improved version of Keel and Mori's theorem.
引用
收藏
页码:629 / 669
页数:41
相关论文
共 46 条
[1]   Tame stacks in positive characteristic [J].
Abramovich, Dan ;
Olsson, Martin ;
Vistoli, Angelo .
ANNALES DE L INSTITUT FOURIER, 2008, 58 (04) :1057-1091
[2]  
[Anonymous], PRINCETON MATH SERIE
[3]  
[Anonymous], 1961, I HAUTES ETUDEST SCI
[4]  
[Anonymous], 1972, LECT NOTES MATH, V270
[5]   JOINS OF HENSEL RINGS [J].
ARTIN, M .
ADVANCES IN MATHEMATICS, 1971, 7 (03) :282-&
[6]   VERSAL DEFORMATIONS AND ALGEBRAIC STACKS [J].
ARTIN, M .
INVENTIONES MATHEMATICAE, 1974, 27 (03) :165-189
[7]  
Artin M., 1973, THEOREMES REPRESENTA
[8]  
Artin Michael, 1969, Glob. Anal., P21
[9]  
Artin MichaelF., 1969, IMPLICIT FUNCTION TH, P13
[10]  
Bosch Siegfried, 1990, NERON MODELS