Nano-acoustic resonator with ultralong phonon lifetime

被引:214
作者
MacCabe, Gregory S. [1 ,2 ,3 ,4 ]
Ren, Hengjiang [1 ,2 ,3 ]
Luo, Jie [1 ,2 ,3 ,5 ]
Cohen, Justin D. [1 ,2 ,3 ,6 ]
Zhou, Hengyun [1 ,2 ,3 ,7 ]
Sipahigil, Alp [1 ,2 ,3 ]
Mirhosseini, Mohammad [1 ,2 ,3 ]
Painter, Oskar [1 ,2 ,3 ,4 ]
机构
[1] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] CALTECH, Thomas J Watson Sr Lab Appl Phys, Pasadena, CA 91125 USA
[4] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[5] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Adv Quantum Testbed, Berkeley, CA 94720 USA
[6] Booz Allen Hamilton Inc, Mclean, VA 22102 USA
[7] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
SINGLE-CRYSTAL SILICON; MECHANICAL-PROPERTIES; ELASTIC-CONSTANTS; LOW-TEMPERATURES; NATIVE-OXIDE; SOUND; ABSORPTION; DAMAGE; NOISE; LIGHT;
D O I
10.1126/science.abc7312
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The energy damping time in a mechanical resonator is critical to many precision metrology applications, such as timekeeping and force measurements. We present measurements of the phonon lifetime of a microwave-frequency, nanoscale silicon acoustic cavity incorporating a phononic bandgap acoustic shield. Using pulsed laser light to excite a colocalized optical mode of the cavity, we measured the internal acoustic modes with single-phonon sensitivity down to millikelvin temperatures, yielding a phonon lifetime of up to tau(ph,0) approximate to 1.5 seconds (quality factor Q = 5 x 10(10)) and a coherence time of tau(coh,0) approximate to 130 microseconds for bandgap-shielded cavities. These acoustically engineered nanoscale structures provide a window into the material origins of quantum noise and have potential applications ranging from tests of various collapse models of quantum mechanics to miniature quantum memory elements in hybrid superconducting quantum circuits.
引用
收藏
页码:840 / +
页数:53
相关论文
共 55 条
[1]  
Akhieser A, 1939, J PHYS-USSR, V1, P277
[2]   Coupling a Superconducting Quantum Circuit to a Phononic Crystal Defect Cavity [J].
Arrangoiz-Arriola, Patricio ;
Wollack, E. Alex ;
Pechal, Marek ;
Witmer, Jeremy D. ;
Hill, Jeff T. ;
Safavi-Naeini, Amir H. .
PHYSICAL REVIEW X, 2018, 8 (03)
[3]   Dimensional transformation of defect-induced noise, dissipation, and nonlinearity [J].
Behunin, R. O. ;
Intravaia, F. ;
Rakich, P. T. .
PHYSICAL REVIEW B, 2016, 93 (22)
[4]   SPECTRAL DIFFUSION, PHONON ECHOES, AND SATURATION RECOVERY IN GLASSES AT LOW-TEMPERATURES [J].
BLACK, JL ;
HALPERIN, BI .
PHYSICAL REVIEW B, 1977, 16 (06) :2879-2895
[5]  
Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/NPHYS1994, 10.1038/nphys1994]
[6]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[7]   Experimental realization of on-chip topological nanoelectromechanical metamaterials [J].
Cha, Jinwoong ;
Kim, Kun Woo ;
Daraio, Chiara .
NATURE, 2018, 564 (7735) :229-+
[8]   Optimized optomechanical crystal cavity with acoustic radiation shield [J].
Chan, Jasper ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Meenehan, Sean ;
Painter, Oskar .
APPLIED PHYSICS LETTERS, 2012, 101 (08)
[9]   Phonon counting and intensity interferometry of a nanomechanical resonator [J].
Cohen, Justin D. ;
Meenehan, Sean M. ;
MacCabe, Gregory S. ;
Groeblacher, Simon ;
Safavi-Naeini, Amir H. ;
Marsili, Francesco ;
Shaw, Matthew D. ;
Painter, Oskar .
NATURE, 2015, 520 (7548) :522-525
[10]   Superconducting Circuits for Quantum Information: An Outlook [J].
Devoret, M. H. ;
Schoelkopf, R. J. .
SCIENCE, 2013, 339 (6124) :1169-1174