Spathial: an R package for the evolutionary analysis of biological data

被引:7
作者
Gardini, Erika [1 ,2 ]
Giorgi, Federico M. [2 ]
Decherchi, Sergio [1 ]
Cavalli, Andrea [1 ,2 ]
机构
[1] Fdn Ist Italiano Tecnol, Computat & Chem Biol, I-16163 Genoa, Italy
[2] Univ Bologna, Dept Pharm & Biotechnol, I-40126 Bologna, Italy
关键词
D O I
10.1093/bioinformatics/btaa273
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A primary problem in high-throughput genomics experiments is finding the most important genes involved in biological processes (e.g. tumor progression). In this applications note, we introduce spathial, an R package for navigating high-dimensional data spaces. spathial implements the Principal Path algorithm, which is a topological method for locally navigating on the data manifold. The package, together with the core algorithm, provides several high-level functions for interpreting the results. One of the analyses we propose is the extraction of the genes that are mainly involved in the progress from one state to another. We show a possible application in the context of tumor progression using RNA-Seq and single-cell datasets, and we compare our results with two commonly used algorithms, edgeR and monocle3, respectively.
引用
收藏
页码:4664 / 4667
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1959, NUMERISCHE MATH, DOI DOI 10.1007/BF01386390
[2]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[3]   Finding Principal Paths in Data Space [J].
Ferrarotti, Marco Jacopo ;
Rocchia, Walter ;
Decherchi, Sergio .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (08) :2449-2462
[4]   Transcriptomic Characterization of the Human Cell Cycle in Individual Unsynchronized Cells [J].
Karlsson, Joakim ;
Kroneis, Thomas ;
Jonasson, Emma ;
Larssonl, Erik ;
Stahlberg, Anders .
JOURNAL OF MOLECULAR BIOLOGY, 2017, 429 (24) :3909-3924
[5]   The Genotype-Tissue Expression (GTEx) project [J].
Lonsdale, John ;
Thomas, Jeffrey ;
Salvatore, Mike ;
Phillips, Rebecca ;
Lo, Edmund ;
Shad, Saboor ;
Hasz, Richard ;
Walters, Gary ;
Garcia, Fernando ;
Young, Nancy ;
Foster, Barbara ;
Moser, Mike ;
Karasik, Ellen ;
Gillard, Bryan ;
Ramsey, Kimberley ;
Sullivan, Susan ;
Bridge, Jason ;
Magazine, Harold ;
Syron, John ;
Fleming, Johnelle ;
Siminoff, Laura ;
Traino, Heather ;
Mosavel, Maghboeba ;
Barker, Laura ;
Jewell, Scott ;
Rohrer, Dan ;
Maxim, Dan ;
Filkins, Dana ;
Harbach, Philip ;
Cortadillo, Eddie ;
Berghuis, Bree ;
Turner, Lisa ;
Hudson, Eric ;
Feenstra, Kristin ;
Sobin, Leslie ;
Robb, James ;
Branton, Phillip ;
Korzeniewski, Greg ;
Shive, Charles ;
Tabor, David ;
Qi, Liqun ;
Groch, Kevin ;
Nampally, Sreenath ;
Buia, Steve ;
Zimmerman, Angela ;
Smith, Anna ;
Burges, Robin ;
Robinson, Karna ;
Valentino, Kim ;
Bradbury, Deborah .
NATURE GENETICS, 2013, 45 (06) :580-585
[6]   EMT Transition States during Tumor Progression and Metastasis [J].
Pastushenko, Ievgenia ;
Blanpain, Cedric .
TRENDS IN CELL BIOLOGY, 2019, 29 (03) :212-226
[7]  
Qiu XJ, 2017, NAT METHODS, V14, P979, DOI [10.1038/NMETH.4402, 10.1038/nmeth.4402]
[8]   Cognitive Insights into Sentic Spaces Using Principal Paths [J].
Ragusa, Edoardo ;
Gastaldo, Paolo ;
Zunino, Rodolfo ;
Ferrarotti, Marco Jacopo ;
Rocchia, Walter ;
Decherchi, Sergio .
COGNITIVE COMPUTATION, 2019, 11 (05) :656-675
[9]   edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J].
Robinson, Mark D. ;
McCarthy, Davis J. ;
Smyth, Gordon K. .
BIOINFORMATICS, 2010, 26 (01) :139-140
[10]   The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers [J].
Sondka, Zbyslaw ;
Bamford, Sally ;
Cole, Charlotte G. ;
Ward, Sari A. ;
Dunham, Ian ;
Forbes, Simon A. .
NATURE REVIEWS CANCER, 2018, 18 (11) :696-705