Accessing the third dimension in localization-based super-resolution microscopy

被引:29
作者
Hajj, Bassam [1 ,2 ]
El Beheiry, Mohamed [1 ,2 ]
Izeddin, Ignacio [3 ]
Darzacq, Xavier [2 ,3 ]
Dahan, Maxime [1 ,2 ]
机构
[1] Univ Paris 06, CNRS UMR 168, Inst Curie, Lab Phys Chim Curie, F-75005 Paris, France
[2] Howard Hughes Med Inst, Transcript Imaging Consortium, Ashburn, VA 20147 USA
[3] Ecole Normale Super, CNRS UMR8197, Inst Biol ENS, F-75005 Paris, France
关键词
SINGLE-MOLECULE TRACKING; MULTIFOCAL PLANE MICROSCOPY; FLUORESCENCE MICROSCOPY; MITOCHONDRIAL NUCLEOIDS; 3-DIMENSIONAL TRACKING; DIFFRACTION-LIMIT; PARTICLE-TRACKING; RESOLUTION LIMIT; QUANTUM-DOT; NANOSCOPY;
D O I
10.1039/c4cp01380h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Only a few years after its inception, localization-based super-resolution microscopy has become widely employed in biological studies. Yet, it is primarily used in two-dimensional imaging and accessing the organization of cellular structures at the nanoscale in three dimensions (3D) still poses important challenges. Here, we review optical and computational techniques that enable the 3D localization of individual emitters and the reconstruction of 3D super-resolution images. These techniques are grouped into three main categories: PSF engineering, multiple plane imaging and interferometric approaches. We provide an overview of their technical implementation as well as commentary on their applicability. Finally, we discuss future trends in 3D localization-based super-resolution microscopy.
引用
收藏
页码:16340 / 16348
页数:9
相关论文
共 85 条
[1]  
Abrahamsson S, 2013, NAT METHODS, V10, P60, DOI [10.1038/nmeth.2277, 10.1038/NMETH.2277]
[2]  
[Anonymous], 2010, SINGLE PARTICLE TRAC
[3]   Conformational analysis of single polymer chains in three dimensions by super-resolution fluorescence microscopy [J].
Aoki, Hiroyuki ;
Mori, Kazuki ;
Ito, Shinzaburo .
SOFT MATTER, 2012, 8 (16) :4390-4395
[4]  
Aquino D, 2011, NAT METHODS, V8, P353, DOI [10.1038/NMETH.1583, 10.1038/nmeth.1583]
[5]   A high-density 3D localization algorithm for stochastic optical reconstruction microscopy [J].
Babcock, Hazen ;
Sigal, Yaron M. ;
Zhuang, Xiaowei .
Optical Nanoscopy, 2012, 1 (01) :1-10
[6]   4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues [J].
Baddeley, David ;
Crossman, David ;
Rossberger, Sabrina ;
Cheyne, Juliette E. ;
Montgomery, Johanna M. ;
Jayasinghe, Isuru D. ;
Cremer, Christoph ;
Cannell, Mark B. ;
Soeller, Christian .
PLOS ONE, 2011, 6 (05)
[7]   Fourier ring correlation as a resolution criterion for super-resolution microscopy [J].
Banterle, Niccolo ;
Khanh Huy Bui ;
Lemke, Edward A. ;
Beck, Martin .
JOURNAL OF STRUCTURAL BIOLOGY, 2013, 183 (03) :363-367
[8]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[9]  
Born M., 1997, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
[10]   Superresolution Fluorescence Imaging of Mitochondrial Nucleoids Reveals Their Spatial Range, Limits, and Membrane Interaction [J].
Brown, Timothy A. ;
Tkachuk, Ariana N. ;
Shtengel, Gleb ;
Kopek, Benjamin G. ;
Bogenhagen, Daniel F. ;
Hess, Harald F. ;
Clayton, David A. .
MOLECULAR AND CELLULAR BIOLOGY, 2011, 31 (24) :4994-5010