Partial anti-synchronization in a class of chaotic systems

被引:0
作者
Wu, Cong [1 ]
Li, Shengzheng [1 ]
Dong, Zhen [2 ]
Guo, Rongwei [1 ]
机构
[1] Qilu Univ Technol, Sch Math & Stat, Shandong Acad Sci, Jinan 250353, Peoples R China
[2] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
关键词
Partial; Anti-synchronization; Existence; Algorithm; Dynamic feedback control; NEURAL-NETWORKS; ANTIPHASE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the partial anti-synchronization in a class of chaotic systems. Firstly, the existence of the partial anti-synchronization for the chaotic system is proved. By a systematic method including two algorithms, all solutions of the partial anti-synchronization for a given chaotic system are then derived, and physical controllers are designed. Finally, an illustrative example with numerical simulations is used to verify the validity and effectiveness of the theoretical results.
引用
收藏
页码:148 / 153
页数:6
相关论文
共 50 条
[41]   Anti-synchronization of chaotic systems using a fractional conformable derivative with power law [J].
Emmanuel Solis-Perez, Jesus ;
Francisco Gomez-Aguilar, Jose ;
Baleanu, Dumitru ;
Tchier, Fairouz ;
Ragoub, Lakhdar .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) :8286-8301
[42]   Compound difference anti-synchronization between chaotic systems of integer and fractional order [J].
Khan, Ayub ;
Trikha, Pushali .
SN APPLIED SCIENCES, 2019, 1 (07)
[43]   Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems [J].
Fang, Liyou ;
Li, Tieshan ;
Li, Zifu ;
Li, Ronghui .
NONLINEAR DYNAMICS, 2013, 74 (04) :991-1002
[44]   Robust Finite-Time Anti-Synchronization of Chaotic Systems with Different Dimensions [J].
Ahmad, Israr ;
Saaban, Azizan Bin ;
Ibrahim, Adyda Binti ;
Shahzad, Mohammad .
MATHEMATICS, 2015, 3 (04) :1222-1240
[45]   Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems [J].
Liyou Fang ;
Tieshan Li ;
Zifu Li ;
Ronghui Li .
Nonlinear Dynamics, 2013, 74 :991-1002
[46]   Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity [J].
Chiang, Tsung-Ying ;
Lin, Jui-Sheng ;
Liao, Teh-Lu ;
Yan, Jun-Juh .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) :2629-2637
[47]   Anti-synchronization of uncertain chaotic system and parameters identification [J].
Li Nong ;
Li Jian-Fen ;
Liu Yu Ping .
ACTA PHYSICA SINICA, 2010, 59 (09) :5954-5958
[48]   Anti-synchronization in Different Hyperchaotic Systems [J].
DOU FuQuan SUN JianAn DUAN WenShan College of Physics and Electronics EngineeringNorthwest Normal UniversityLanzhou China .
CommunicationsinTheoreticalPhysics, 2008, 50 (10) :907-912
[49]   ANTI-SYNCHRONIZATION OF UNIFIED HYPERCHAOTIC SYSTEMS [J].
Li Pi ;
Wang Xing-Yuan ;
Sun Peng ;
Luo Chao ;
Wang Xiu-Kun .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (05)
[50]   Anti-synchronization in Different Hyperchaotic Systems [J].
Dou Fu-Quan ;
Sun Jian-An ;
Duan Wen-Shan .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (04) :907-912