Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial

被引:92
|
作者
Teng, Lin [1 ]
Iu, Herbert H. C. [2 ]
Wang, Xingyuan [1 ]
Wang, Xiukun [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
[2] Univ Western Australia, Sch Elect Elect & Comp Engn, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Chaos; Fractional-order system; Memristor; Simplest chaotic circuit; TIME-SERIES; SYSTEMS;
D O I
10.1007/s11071-014-1286-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristor function and fourth degree polynomial memristance function to increase complexity of the chaos. So, the system can generate double-scroll attractor and four-scroll attractor. Systematic studies of chaotic behavior in the integer-order and fractional-order systems are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and stability analysis. Simulation results show that both integer-order and fractional-order systems exhibit chaotic behavior over a range of control parameters.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 50 条
  • [1] Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial
    Lin Teng
    Herbert H. C. Iu
    Xingyuan Wang
    Xiukun Wang
    Nonlinear Dynamics, 2014, 77 : 231 - 241
  • [2] On the simplest fractional-order memristor-based chaotic system
    Cafagna, Donato
    Grassi, Giuseppe
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1185 - 1197
  • [3] On the simplest fractional-order memristor-based chaotic system
    Donato Cafagna
    Giuseppe Grassi
    Nonlinear Dynamics, 2012, 70 : 1185 - 1197
  • [4] Fractional-Order Memristor-Based Chua's Circuit
    Petras, Ivo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2010, 57 (12) : 975 - 979
  • [5] Hopf bifurcation and chaos in a fractional order delayed memristor-based chaotic circuit system
    Hu, Wei
    Ding, Dawei
    Zhang, Yaqin
    Wang, Nian
    Liang, Dong
    OPTIK, 2017, 130 : 189 - 200
  • [6] Impulsive anti-synchronization control for fractional-order chaotic circuit with memristor
    Meng, F.
    Zeng, X.
    Wang, Z.
    INDIAN JOURNAL OF PHYSICS, 2019, 93 (09) : 1187 - 1194
  • [7] Detect Topological Horseshoes in the Simplest Memristor-Based Chaotic Circuit for Chaos Verification
    Li Qing-du
    Feng Xin
    Hu Shi-yi
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1185 - 1189
  • [8] Synchronization of Fractional-Order Memristor-Based Chaotic System via Adaptive Control
    丁大为
    张亚琴
    王年
    JournalofDonghuaUniversity(EnglishEdition), 2017, 34 (05) : 653 - 660
  • [9] A novel memristor-based chaotic system with fractional order
    Donato, Cafagna
    Giuseppe, Grassi
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [10] Fractional-order memristor-based chaotic jerk system with no equilibrium point and its fractional-order backstepping control
    Prakash, Pankaj
    Singh, Jay Prakash
    Roy, B. K.
    IFAC PAPERSONLINE, 2018, 51 (01): : 1 - 6