The Effects of Changing Fuels on Hot Gas Path Conditions in Syngas Turbines

被引:4
|
作者
Sabau, Adrian S. [1 ]
Wright, Ian G. [1 ]
机构
[1] Oak Ridge Natl Lab, Mat & Sci & Technol Div, Oak Ridge, TN 37831 USA
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2009年 / 131卷 / 04期
关键词
blades; combined cycle power stations; combustion; compressors; coolants; cooling; gas turbines; thermodynamics; BLADE;
D O I
10.1115/1.3028566
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Gas turbines in integrated gasification combined cycle power plants burn a fuel gas (syngas (SG)) in which the proportions of hydrocarbons, H(2), CO, water vapor, and minor impurity levels may differ significantly from those in natural gas (NG). Such differences can yield changes in the temperature, pressure, and corrosive species that are experienced by critical components in the hot gas path, with important implications for the design, operation, and reliability of the turbine. A new data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle, with emphasis on the hot gas path components. The approach used allows efficient handling of turbine components and variable constraints due to fuel changes. Examples are presented for a turbine with four stages, in which the vanes and blades are cooled in an open circuit using air from the appropriate compressor stages. For an imposed maximum metal temperature, values were calculated for the fuel, air, and coolant flow rates and through-wall temperature gradients for cases where the turbine was fired with NG or SG. A NG case conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points indicated that this is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case to comply with the imposed temperature constraints. Thus, for that case, the turbine size would be different for SG than for NG. A second series of simulations examined scenarios for maintaining the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) used for the SG simulations. In these, the inlet mass flow was varied while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effects of turbine matching between the NG and SG cases were increases-for the SG case of approximately 7% and 13% for total cooling flows and cooling flows for the first-stage vane, respectively. In particular, for the SG case, the vanes in the last stage of the turbine experienced inner wall temperatures that approached the maximum allowable limit.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] PRETREAT LIQUID FUELS FOR GAS TURBINES.
    Anon
    1600, (118):
  • [22] Modification of gas turbines and operation with solar produced syngas
    Sugarmen, C
    Rotstein, A
    Fisher, U
    Sinai, J
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (03): : 867 - 871
  • [23] Alternative fuels for industrial gas turbines (AFTUR)
    Gökalp, I
    Lebas, E
    APPLIED THERMAL ENGINEERING, 2004, 24 (11-12) : 1655 - 1663
  • [24] 'CAN GAS TURBINES LIVE ON HEAVY FUELS'?
    Nilsson, Nils
    Energy Processing/Canada, 1986, 78 (03) : 16 - 18
  • [25] COMBUSTION OF GASEOUS FUELS IN GAS-TURBINES
    WOYCENKO, DM
    SMART, JP
    JOURNAL OF THE INSTITUTE OF ENERGY, 1993, 66 (469): : 150 - 158
  • [26] Passage of trace metal contaminants through hot gas paths of gas turbines burning biomass and waste-fuels
    Bradshaw, A.
    Simms, N. J.
    Nicholls, J. R.
    FUEL, 2008, 87 (17-18) : 3529 - 3536
  • [27] Exhaust gas recirculation with highly oxygenated fuels in gas turbines
    Rosec, Ziga
    Katrasnik, Tomaz
    Baskovic, Urban Zvar
    Seljak, Tine
    FUEL, 2020, 278
  • [28] Experimental setup for gas turbines operating on alternative gas fuels
    1600, Politechnica University of Bucharest (75):
  • [29] HOT CORROSION IN GAS-TURBINES
    JONES, RL
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (08) : C323 - C323
  • [30] HOT CORROSION IN GAS-TURBINES
    LUNT, HE
    MECHANICAL ENGINEERING, 1978, 100 (05) : 92 - 93