A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces

被引:34
作者
Kim, Junseok [1 ]
Jeong, Darae [1 ]
Yang, Seong-Deog [1 ]
Choi, Yongho [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Conservative Allen-Cahn equation; Narrow band domain; Closest point method; Space-time-dependent Lagrange multiplier; PHASE-FIELD MODEL; IMAGE SEGMENTATION; MOTION;
D O I
10.1016/j.jcp.2016.12.060
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an efficient numerical scheme for the conservative Allen-Cahn (CAC) equation on various surfaces embedded in a narrow band domain in the three-dimensional Space. We apply a quasi-Neumann boundary condition on the narrow band domain boundary using the closest point method. This boundary treatment allows us to use the standard Cartesian Laplacian operator instead of the Laplace-Beltrami operator. We apply a hybrid operator splitting method for solving the CAC equation. First, we use an explicit Euler method to solve the diffusion term. Second, we solve the nonlinear term by using a closed form solution. Third, we apply a space-time-dependent Lagrange multiplier to conserve the total quantity. The overall scheme is explicit in time and does not need iterative steps; therefore, it is fast. A series of numerical experiments demonstrate the accuracy and efficiency of the proposed hybrid scheme. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 25 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]   On the Laplace-Beltrami operator and brain surface flattening [J].
Angenent, S ;
Haker, S ;
Tannenbaum, A ;
Kikinis, R .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (08) :700-711
[3]   Geometrical image segmentation by the Allen-Cahn equation [J].
Benes, M ;
Chalupecky, V ;
Mikula, K .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) :187-205
[4]  
Burden RL, 2011, Numerical analysis
[5]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[6]   An efficient algorithm for solving the phase field crystal model [J].
Cheng, Mowei ;
Warren, James A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) :6241-6248
[7]   An unconditionally gradient stable numerical method for solving the Allen-Cahn equation [J].
Choi, Jeong-Whan ;
Lee, Hyun Geun ;
Jeong, Darae ;
Kim, Junseok .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (09) :1791-1803
[8]   Motion by mean curvature of curves on surfaces using the Allen-Cahn equation [J].
Choi, Yongho ;
Jeong, Darae ;
Lee, Seunggyu ;
Yoo, Minhyun ;
Kim, Junseok .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2015, 97 :126-132
[9]   Unconditionally gradient stable time marching the Cahn-Hilliard equation [J].
Eyre, DJ .
COMPUTATIONAL AND MATHEMATICAL MODELS OF MICROSTRUCTURAL EVOLUTION, 1998, 529 :39-46
[10]   Inpainting algorithm for Jacquared Image Based on Phase-Field Model [J].
Feng, Zhilin ;
Yin, Jianwei ;
Zhou, Jianan .
2008 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM AND KNOWLEDGE ENGINEERING, VOLS 1 AND 2, 2008, :1203-+