Optimization of reaction parameters for bio-oil production by catalytic pyrolysis of microalga Tetraselmis suecica: Influence of Ni-loading on the bio-oil composition

被引:20
|
作者
Srivatsa, Srikanth Chakravartula [1 ]
Li, Fanghua [1 ]
Bhattacharya, Sankar [1 ]
机构
[1] Monash Univ, Dept Chem Engn, Wellington Rd, Clayton, Vic 3800, Australia
关键词
Tetraselmis suecica; Fixed-bed pyrolysis; Bio-oil; Hydrocarbon; Nickel-loading catalyst; RSM; AROMATIC-HYDROCARBONS; WASTE-WATER; BIOMASS; GASIFICATION; QUALITY;
D O I
10.1016/j.renene.2019.04.130
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, a marine microalga Tetraselmis suecica was pyrolyzed in a fixed-bed reactor in the presence of a series of zeolite (Si/Al = 30) supported Ni catalysts to increase the hydrocarbon composition of the pyrolysis oil by a two-step process - devolatilization followed by catalytic treatment. A 3 wt% Ni-loading on zeolite showed the highest hydrocarbon content of 55.38%, in which aliphatic hydrocarbons and aromatic hydrocarbons were 35.21% and 20.17%, respectively. Besides, the oxygen-containing compounds decreased from 42.88% to 9.55% while the nitrogen-containing compounds decreased from 40.68% to 35.07%. The activity of the Ni-loaded catalysts was found to increase up to 3 wt % Ni-loading and decrease at higher loadings in similar lines to catalyst acidity measurements. Besides, the catalytic activity decreased with an increase in crystallite size of Ni at higher Ni loadings. The results indicate that the Ni-loaded catalysts can deoxygenate pyrolysis oils, but it is necessary to address the removal of the nitrogenous compounds. Pyrolysis temperature and Ni-loading play an important role in the removal of oxygen and nitrogen from the bio-oil. The quality of the bio-oil can be affected by the presence of strong acid sites, nickel-loading and the pore size. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
  • [2] Catalytic pyrolysis of rice husk for bio-oil production
    Abu Bakar, M.S. (abubakas@aston.ac.uk), 1600, Elsevier B.V., Netherlands (103):
  • [3] Investigation of catalytic pyrolysis of spirulina for bio-oil production
    Hematkhah, Raza
    Majidian, Nasrollah
    Hallajisani, Ahmad
    Samipoorgiri, Mohammad
    ARABIAN JOURNAL OF CHEMISTRY, 2023, 16 (05)
  • [4] Catalytic pyrolysis of rice husk for bio-oil production
    Abu Bakar, Muhammad S.
    Titiloye, James O.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2013, 103 : 362 - 368
  • [5] Bio-oil production and catalytic upgrading
    Mohapatra, Susanta
    Hemyeri, Reza
    Manesh, Ali
    NANOTECHNOLOGY 2012, VOL 3: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, 2012, : 499 - 502
  • [6] Catalytic pyrolysis for bio-oil quality improvement
    Salter, EH
    Bridgwater, AV
    BIOMASS FOR ENERGY AND INDUSTRY, 1998, : 1773 - 1776
  • [7] STUDY OF CATALYTIC HYDROTREATMENT OF PYROLYSIS BIO-OIL
    Auersvald, M.
    Straka, P.
    Shumeiko, B.
    Stas, M.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY (ICCT), 2017, : 299 - 303
  • [8] Catalytic pyrolysis of waste furniture sawdust for bio-oil production
    Uzun, Basak B.
    Kanmaz, Gulin
    WASTE MANAGEMENT & RESEARCH, 2014, 32 (07) : 646 - 652
  • [9] Production of Bio-oil via Catalytic Pyrolysis of Medlar Seeds
    Topak, Fatima
    Akalin, Mehmet Kuddusi
    BIORESOURCES, 2023, 18 (02) : 3144 - 3159
  • [10] Study on Catalytic Pyrolysis of Manchurian Ash for Production of Bio-Oil
    Wang, Shurong
    Liu, Qian
    Wang, Kaige
    Guo, Xiujuan
    Luo, Zhongyang
    Cen, Kefa
    Fransson, Torsten
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2010, 7 (03) : 300 - 309