Redox properties and CO2 capture ability of CeO2 prepared by a glycol solvothermal method

被引:22
作者
Li, Chuncheng [1 ]
Liu, Xiaohui [1 ]
Lu, Guanzhong [1 ]
Wang, Yanqin [1 ]
机构
[1] E China Univ Sci & Technol, Res Inst Ind Catalysis, Key Lab Adv Mat, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Ceria; Oxygen vacancy; Reversible redox property; Carbon dioxide capture; Carbon dioxide in-situ diffuse reflectance infrared spectroscopy; RAY PHOTOELECTRON-SPECTROSCOPY; CARBON-DIOXIDE CAPTURE; INFRARED-SPECTROSCOPY; OXYGEN VACANCIES; CERIA; CATALYSTS; OXIDATION; OXIDES; NANOPARTICLES; REDUCIBILITY;
D O I
10.1016/S1872-2067(14)60163-7
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
CeO2 nanocrystals with plentiful oxygen vacancies were synthesized by a glycol solvothermal method (CeO2-GST) using the strong reducibility of glycol. For comparison, CeO2 nanorods (CeO2-nanorods) and CeO(2)nanoparticles (CeO2-CA) were also prepared. The samples were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, H-2 reduction-O-2 oxidation cycle experiments and in situ CO2 infrared spectroscopy. The CeO2-GST sample exposed mainly (111) facets with abundant Ce3+ ions on its surface, and it gave excellent reversible redox behavior and high oxygen storage capacity. After seven H-2 reduction-O-2 oxidation cycles, the oxygen storage capacity became stable. The CeO2-GST sample also had a high CO2 adsorption capacity of 149 mu mol/g at 50 degrees C by forming bidentate and bridge carbonates on the CeO2 surface. These carbonate species were less stable than the unidentate carbonate, bicarbonate and formate species, thus adsorbed CO2 was released easily. On reduced CeO2 nanorod, CO2 formed the stable unidentate carbonate and formate species, which is unfavorable,for the release of adsorbed CO2. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1364 / 1375
页数:12
相关论文
共 39 条
[1]   Defect Chemistry of Ceria Nanorods [J].
Agarwal, S. ;
Zhu, X. ;
Hensen, E. J. M. ;
Lefferts, L. ;
Mojet, B. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (08) :4131-4142
[2]   Nanosized Unsupported and Alumina-Supported Ceria-Zirconia and Ceria-Terbia Solid Solutions for CO Oxidation [J].
Benjaram, M. Reddy ;
Gode, Thrimurthulu ;
Katta, Lakshmi .
CHINESE JOURNAL OF CATALYSIS, 2011, 32 (05) :800-806
[3]   FTIR STUDY OF CARBON-MONOXIDE ADSORPTION ON CERIA - CO2(2-) CARBONITE DIANION ADSORBED SPECIES [J].
BINET, C ;
BADRI, A ;
BOUTONNETKIZLING, M ;
LAVALLEY, JC .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1994, 90 (07) :1023-1028
[4]   Ce promoted Pd-Nb catalysts for γ-valerolactone ring-opening and hydrogenation [J].
Buitrago-Sierra, R. ;
Serrano-Ruiz, J. C. ;
Rodriguez-Reinoso, F. ;
Sepulveda-Escribano, A. ;
Dumesic, J. A. .
GREEN CHEMISTRY, 2012, 14 (12) :3318-3324
[5]   Chemistry - Oxygen vacancies and catalysis on ceria surfaces [J].
Campbell, CT ;
Peden, CHF .
SCIENCE, 2005, 309 (5735) :713-714
[6]   COMPUTER MODELING OF SURFACES AND DEFECTS ON CERIUM DIOXIDE [J].
CONESA, JC .
SURFACE SCIENCE, 1995, 339 (03) :337-352
[7]   Carbon Dioxide Capture: Prospects for New Materials [J].
D'Alessandro, Deanna M. ;
Smit, Berend ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) :6058-6082
[8]   Surface-dependent oxidation of H2 on CeO2 surfaces [J].
Desaunay, T. ;
Bonura, G. ;
Chiodo, V. ;
Freni, S. ;
Couzinie, J. -P. ;
Bourgon, J. ;
Ringuede, A. ;
Labat, F. ;
Adamo, C. ;
Cassir, M. .
JOURNAL OF CATALYSIS, 2013, 297 :193-201
[9]   Nanostructured CeO2-ZrO2 mixed oxides [J].
Di Monte, R ;
Kaspar, J .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (06) :633-648
[10]   Electron localization determines defect formation on ceria substrates [J].
Esch, F ;
Fabris, S ;
Zhou, L ;
Montini, T ;
Africh, C ;
Fornasiero, P ;
Comelli, G ;
Rosei, R .
SCIENCE, 2005, 309 (5735) :752-755