Semi-analytical solutions for the reversible Selkov model with feedback delay

被引:17
作者
Al Noufaey, K. S. [1 ]
Marchant, T. R. [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
关键词
Semi-analytical solutions; Reaction-diffusion equations; Feedback delay; Reversible Selkov model; Hopf bifurcations; DIFFUSION; OSCILLATIONS;
D O I
10.1016/j.amc.2014.01.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semi-analytical solutions for the reversible Selkov, or glycolytic oscillations model, are considered. The model is coupled with feedback at the boundary and considered in one-dimensional reaction-diffusion cell. This experimentally feasible scenario is analogous to feedback scenarios in a continuously stirred tank reactor. The Galerkin method is applied, which approximates the spatial structure of both the reactant and autocatalyst concentrations. This approach is used to obtain a lower-order, ordinary differential equation model for the system of governing equations. Steady-state solutions, bifurcation diagrams and the region of parameter space, in which Hopf bifurcations occur, are all found. The effect of feedback strength and delay response on the parameter region in which oscillatory solutions occur, is examined. It is found that varying the strength of the feedback response can stabilize or destabilize the system while increasing the delay response usually destabilizes the reaction-diffusion cell. The semi-analytical model is shown to be highly accurate, in comparison with numerical solutions of the governing equations. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 59
页数:11
相关论文
共 50 条
  • [1] Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
    Al Noufaey, K. S.
    RESULTS IN PHYSICS, 2018, 9 : 609 - 614
  • [2] Cubic autocatalysis in a reaction-diffusion annulus: semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [3] SEMI-ANALYTICAL SOLUTIONS FOR THE BRUSSELATOR REACTION-DIFFUSION MODEL
    Alfifi, H. Y.
    ANZIAM JOURNAL, 2017, 59 (02) : 167 - 182
  • [4] A semi-analytical approach for the reversible Schnakenberg reaction-diffusion system
    Al Noufaey, K. S.
    RESULTS IN PHYSICS, 2020, 16
  • [5] Semi-analytical solutions for the delayed diffusive food-limited model
    Alfifi, H. Y.
    2017 7TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION, AND APPLIED OPTIMIZATION (ICMSAO), 2017,
  • [6] Cubic autocatalytic reaction-diffusion equations: semi-analytical solutions
    Marchant, TR
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2020): : 873 - 888
  • [7] Mixed quadratic-cubic autocatalytic reaction-diffusion equations: Semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5160 - 5173
  • [8] Semi-analytical solutions for one- and two-dimensional pellet problems
    Marchant, TR
    Nelson, MI
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2048): : 2381 - 2394
  • [9] Cubic autocatalysis in a reaction–diffusion annulus: semi-analytical solutions
    M. R. Alharthi
    T. R. Marchant
    M. I. Nelson
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [10] Semi-analytical solutions for continuous-flow microwave reactors
    Lee, MZC
    Marchant, TR
    JOURNAL OF ENGINEERING MATHEMATICS, 2002, 44 (02) : 125 - 145