Electroosmotic dewatering of cellulose nanocrystals

被引:19
作者
Wetterling, Jonas [1 ,2 ]
Sahlin, Karin [1 ,2 ]
Mattsson, Tuve [1 ,2 ]
Westman, Gunnar [1 ,2 ]
Theliander, Hans [1 ,2 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Chem Engn, S-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Royal Inst Technol, Wallenberg Wood Sci Ctr, S-10044 Stockholm, Sweden
关键词
Cellulose nanocrystals; Nanocellulose; Electroosmotic dewatering; Solid-liquid separation; Energy demand; MICROCRYSTALLINE CELLULOSE; SLUDGE; SUSPENSIONS; ELECTROFILTRATION; BIOPOLYMERS; FILTRATION; FLOW;
D O I
10.1007/s10570-018-1733-3
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
One of the main challenges for industrial production of cellulose nanocrystals is the high energy demand during the dewatering of dilute aqueous suspensions. It is addressed in this study by utilising electroosmotic dewatering to increase the solid content of suspensions of cellulose nanocrystals. The solid content was increased from 2.3 up to 15.3 wt%, i.e. removal of more than 85% of all the water present in the system, at a much lower energy demand than that of thermal drying. Increasing the strength of the electric field increased not only the dewatering rate but also the specific energy demand of the dewatering operation: the electric field strength used in potential industrial applications is thus a trade-off between the rate of dewatering and the energy demand. Additionally, it was found that high local current intensity had the potential of degrading cellulose nanocrystals in contact with the anode. The maximum strength of the electric field applied should therefore be limited depending on the equipment design and the suspension conditions.
引用
收藏
页码:2321 / 2329
页数:9
相关论文
共 39 条
[1]   Simple citric acid-catalyzed surface esterification of cellulose nanocrystals [J].
Avila Ramirez, Jhon Alejandro ;
Fortunati, Elena ;
Maria Kenny, Jose ;
Torre, Luigi ;
Laura Foresti, Maria .
CARBOHYDRATE POLYMERS, 2017, 157 :1358-1364
[2]   A technique for production of nanocrystalline cellulose with a narrow size distribution [J].
Bai, Wen ;
Holbery, James ;
Li, Kaichang .
CELLULOSE, 2009, 16 (03) :455-465
[3]   Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J].
Beck-Candanedo, S ;
Roman, M ;
Gray, DG .
BIOMACROMOLECULES, 2005, 6 (02) :1048-1054
[4]   Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions [J].
Borjesson, Mikaela ;
Sahlin, Karin ;
Bernin, Diana ;
Westman, Gunnar .
JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (10)
[5]   Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: Electrical variables analysis [J].
Citeau, M. ;
Olivier, J. ;
Mahmoud, A. ;
Vaxelaire, J. ;
Larue, O. ;
Vorobiev, E. .
WATER RESEARCH, 2012, 46 (14) :4405-4416
[6]   Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose [J].
Cranston, Emily D. ;
Gray, Derek G. .
BIOMACROMOLECULES, 2006, 7 (09) :2522-2530
[7]   Measurement and interpretation of electrokinetic phenomena [J].
Delgado, A. V. ;
Gonzalez-Caballero, F. ;
Hunter, R. J. ;
Koopal, L. K. ;
Lyklema, J. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 309 (02) :194-224
[8]   Electrofiltration of Biopolymers [J].
Goezke, Goezde ;
Posten, Clemens .
FOOD ENGINEERING REVIEWS, 2010, 2 (02) :131-146
[9]   Cationic surface functionalization of cellulose nanocrystals [J].
Hasani, Merima ;
Cranston, Emily D. ;
Westman, Gunnar ;
Gray, Derek G. .
SOFT MATTER, 2008, 4 (11) :2238-2244
[10]  
Heiskanen I, 2014, US Patent, Patent No. [2014/ 0088301 A1, 20140088301A1]