On projective embeddings of partial planes and rank-three matroids

被引:3
作者
Kalhoff, F [1 ]
机构
[1] UNIV PASSAU,FAK MATH & INFORMAT,D-94030 PASSAU,GERMANY
关键词
rank; 3; matroids; linear spaces; partial planes; projective embeddings; finite projective planes; translation planes; Lenz-Barlotti classification; (non-associative) division algebras;
D O I
10.1016/0012-365X(95)00310-S
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Any finite partial plane f, and thus any finite linear space and any (simple) rank-three matroid, can be embedded into a translation plane. It even turns out, that f is embeddable into a projective plane of Lenz class V, and that the characteristic of this plane can be chosen arbitrarily. In particular, any rank three matroid is realizable over a (not necessarily associative) division algebra.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 5 条
[1]   Projective planes [J].
Hall, Marshall .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) :229-277
[2]  
Hughes D. R., 1955, P AM MATH SOC, V6, P973
[3]  
Pickert G., 1975, PROJEKTIVE EBENEN
[5]  
Welsh DJ., 1976, Matroid Theory