Application of multivariate joint modeling of longitudinal biomarkers and time-to-event data to a rare kidney stone cohort

被引:0
|
作者
Vaughan, Lisa E. E. [1 ]
Lieske, John C. C.
Milliner, Dawn S. S.
Schulte, Phillip J. J. [1 ]
机构
[1] Mayo Clin, Dept Quantitat Hlth Sci, Harwick 8th Floor CT&B Biostat,200 1st St SW, Rochester, MN 55905 USA
关键词
Joint models; survival analysis; biomarkers; kidney failure; primary hyperoxaluria;
D O I
10.1017/cts.2022.465
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background:Time-dependent Cox proportional hazards regression is a popular statistical method used in kidney disease research to evaluate associations between biomarkers collected serially over time with progression to kidney failure. Typically, biomarkers of interest are considered time-dependent covariates being updated at each new measurement using last observation carried forward (LOCF). Recently, joint modeling has emerged as a flexible alternative for multivariate longitudinal and time-to-event data. This study describes and demonstrates multivariate joint modeling using as an example the association of serial biomarkers (plasma oxalate [POX] and urinary oxalate [UOX]) and kidney function among patients with primary hyperoxaluria in the Rare Kidney Stone Consortium Registry. Methods:Time-to-kidney failure was regressed on serially measured biomarkers in two ways: time-dependent LOCF Cox proportional hazards regression and multivariate joint models. Results:In time-dependent LOCF Cox regression, higher POX was associated with increased risk of kidney failure (HR = 2.20 per doubling, 95% CI = [1.38-3.51], p < 0.001) whereas UOX was not (HR = 1.08 per doubling, [0.66-1.77], p = 0.77). In multivariate joint models, estimates suggest higher UOX may be associated with lower risk of kidney failure (HR = 0.42 per doubling [0.15-1.04], p = 0.066), though not statistically significant, since impaired urinary excretion of oxalate may reflect worsening kidney function. Conclusions:Multivariate joint modeling is more flexible than LOCF and may better reflect biological plausibility since biomarkers are not steady-state values between measurements. While LOCF is preferred to naive methods not accounting for changes in biomarkers over time, results may not accurately reflect flexible relationships that can be captured with multivariate joint modeling.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes
    Graeme L. Hickey
    Pete Philipson
    Andrea Jorgensen
    Ruwanthi Kolamunnage-Dona
    BMC Medical Research Methodology, 18
  • [42] A Bayesian joint model for multivariate longitudinal and time-to-event data with application to ALL maintenance studies (Feb, 10.1080/10543406.2023.2171430, 2023)
    Kundu, Damitri
    Sarkar, Partha
    Gogoi, Manash Pratim
    Das, Kiranmoy
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2023,
  • [43] A Proposed Approach for Joint Modeling of the Longitudinal and Time-To-Event Data in Heterogeneous Populations: An Application to HIV/AIDS's Disease
    Roustaei, Narges
    Ayatollahi, Seyyed Mohammad Taghi
    Zare, Najaf
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [44] Jointly modeling time-to-event and longitudinal data: a Bayesian approach
    Huang, Yangxin
    Hu, X. Joan
    Dagne, Getachew A.
    STATISTICAL METHODS AND APPLICATIONS, 2014, 23 (01): : 95 - 121
  • [45] Jointly modeling time-to-event and longitudinal data: a Bayesian approach
    Yangxin Huang
    X. Joan Hu
    Getachew A. Dagne
    Statistical Methods & Applications, 2014, 23 : 95 - 121
  • [46] Within-host bayesian joint modeling of longitudinal and time-to-event data of Leishmania infection
    Pabon-Rodriguez, Felix M.
    Brown, Grant D.
    Scorza, Breanna M.
    Petersen, Christine A.
    PLOS ONE, 2024, 19 (02):
  • [47] Joint modeling of longitudinal zero-inflated count and time-to-event data: A Bayesian perspective
    Zhu, Huirong
    DeSantis, Stacia M.
    Luo, Sheng
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (04) : 1258 - 1270
  • [48] JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data
    Rizopoulos, Dimitris
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 35 (09): : 1 - 33
  • [49] Bayesian Approach for Joint Longitudinal and Time-to-Event Data with Survival Fraction
    Abu Bakar, Mohd Rizam
    Salah, Khalid A.
    Ibrahim, Noor Akma
    Haron, Kassim
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (01) : 75 - 100
  • [50] WEIGHTED BIOMARKER VARIABILITY IN JOINT ANALYSIS OF LONGITUDINAL AND TIME-TO-EVENT DATA
    Wang, Chunyu
    Shen, Jiaming
    Charalambous, Christiana
    Pan, Jianxin
    ANNALS OF APPLIED STATISTICS, 2024, 18 (03): : 2576 - 2595