Hybrid deep learning network for vascular segmentation in photoacoustic imaging

被引:34
作者
Yuan, Alan Yilun [1 ]
Gao, Yang [2 ]
Peng, Liangliang [2 ]
Zhou, Lingxiao [3 ,4 ]
Liu, Jun [5 ]
Zhu, Siwei [5 ]
Song, Wei [3 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Nanophoton Res Ctr, Shenzhen, Peoples R China
[3] Shenzhen Univ, Nanophoton Res Ctr, Inst Microscale Optoelect, Shenzhen Key Lab Microscale Opt Informat Technol, Shenzhen, Peoples R China
[4] Fudan Univ, Zhongshan Xuhui Hosp, Dept Resp Med, Shanghai, Peoples R China
[5] Tianjin Union Med Ctr, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
VESSEL SEGMENTATION; MICROSCOPY; CLASSIFICATION;
D O I
10.1364/BOE.409246
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Photoacoustic (PA) technology has been used extensively on vessel imaging due to its capability of identifying molecular specificities and achieving high optical-diffraction-limited lateral resolution down to the cellular level. Vessel images carry essential medical information that provides guidelines for a professional diagnosis. Modern image processing techniques provide a decent contribution to vessel segmentation. However, these methods suffer from under or over-segmentation. Thus, we demonstrate both the results of adopting a fully convolutional network and U-net, and propose a hybrid network consisting of both applied on PA vessel images. Comparison results indicate that the hybrid network can significantly increase the segmentation accuracy and robustness. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:6445 / 6457
页数:13
相关论文
共 48 条
[21]   Multiscale Hessian filter-based segmentation and quantification method for photoacoustic microangiography [J].
Liu, Ting ;
Sun, Mingjian ;
Feng, Naizhang ;
Wu, Zhenghua ;
Shen, Yi .
CHINESE OPTICS LETTERS, 2015, 13 (09)
[22]   Robust deep learning method for choroidal vessel segmentation on swept source optical coherence tomography images [J].
Liu, Xiaoxiao ;
Bi, Lei ;
Xu, Yupeng ;
Feng, Dagan ;
Kim, Jinman ;
Xu, Xun .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (04) :1601-1612
[23]   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation [J].
Milletari, Fausto ;
Navab, Nassir ;
Ahmadi, Seyed-Ahmad .
PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, :565-571
[24]  
Ng HP, 2006, 7TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, P61
[25]   Vessel Filtering of Photoacoustic Images [J].
Oruganti, Tanmayi ;
Laufer, Jan G. ;
Treeby, Bradley E. .
PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2013, 2013, 8581
[26]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[27]  
Salem N. M., 2015, 2007 15 EUR SIGN PRO
[28]   Blood vessel segmentation in color fundus images based on regional and Hessian features [J].
Shah, Syed Ayaz Ali ;
Tang, Tong Boon ;
Faye, Ibrahima ;
Laude, Augustinus .
GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2017, 255 (08) :1525-1533
[29]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[30]   In Vivo Reflection-Mode Photoacoustic Microscopy Enhanced by Plasmonic Sensing with an Acoustic Cavity [J].
Song, Wei ;
Guo, Guangdi ;
Wang, Jing ;
Zhu, Yan ;
Zhang, Chonglei ;
Fang, Hui ;
Min, Changjun ;
Zhu, Siwei ;
Yuan, Xiaocong .
ACS SENSORS, 2019, 4 (10) :2697-2705